首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   782篇
  免费   83篇
  2021年   4篇
  2019年   8篇
  2017年   7篇
  2016年   15篇
  2015年   28篇
  2014年   32篇
  2013年   32篇
  2012年   47篇
  2011年   45篇
  2010年   22篇
  2009年   12篇
  2008年   32篇
  2007年   51篇
  2006年   37篇
  2005年   30篇
  2004年   30篇
  2003年   37篇
  2002年   46篇
  2001年   15篇
  2000年   13篇
  1999年   14篇
  1998年   14篇
  1997年   11篇
  1996年   14篇
  1995年   6篇
  1994年   8篇
  1993年   10篇
  1992年   12篇
  1991年   12篇
  1990年   8篇
  1989年   10篇
  1988年   12篇
  1987年   20篇
  1986年   9篇
  1985年   14篇
  1984年   13篇
  1983年   8篇
  1982年   4篇
  1981年   11篇
  1980年   6篇
  1979年   9篇
  1978年   4篇
  1975年   4篇
  1973年   7篇
  1972年   5篇
  1971年   4篇
  1970年   7篇
  1968年   4篇
  1963年   5篇
  1951年   3篇
排序方式: 共有865条查询结果,搜索用时 203 毫秒
751.
Aging is the largest risk factor for cardiovascular disease, yet the molecular mechanisms underlying vascular aging remain unclear. Mitochondrial DNA (mtDNA) damage is linked to aging, but whether mtDNA damage or mitochondrial dysfunction is present and directly promotes vascular aging is unknown. Furthermore, mechanistic studies in mice are severely hampered by long study times and lack of sensitive, repeatable and reproducible parameters of arterial aging at standardized early time points. We examined the time course of multiple invasive and noninvasive arterial physiological parameters and structural changes of arterial aging in mice, how aging affects vessel mitochondrial function, and the effects of gain or loss of mitochondrial function on vascular aging. Vascular aging was first detected by 44 weeks (wk) of age, with reduced carotid compliance and distensibility, increased β‐stiffness index and increased aortic pulse wave velocity (PWV). Aortic collagen content and elastin breaks also increased at 44 wk. Arterial mtDNA copy number (mtCN) and the mtCN‐regulatory proteins TFAM, PGC1α and Twinkle were reduced by 44 wk, associated with reduced mitochondrial respiration. Overexpression of the mitochondrial helicase Twinkle (Tw+) increased mtCN and improved mitochondrial respiration in arteries, and delayed physiological and structural aging in all parameters studied. Conversely, mice with defective mitochondrial polymerase‐gamma (PolG) and reduced mtDNA integrity demonstrated accelerated vascular aging. Our study identifies multiple early and reproducible parameters for assessing vascular aging in mice. Arterial mitochondrial respiration reduces markedly with age, and reduced mtDNA integrity and mitochondrial function directly promote vascular aging.  相似文献   
752.
Treatment of hypertension in hemodialysis (HD) patients is characterised by lack of evidence for both the blood pressure (BP) target goal and the recommended drug class to use. Telmisartan, an Angiotensin receptor blocker (ARB) that is metabolised in the liver and not excreted via HD extracorporeal circuit might be particularly suitable for HD patients. We designed and conducted a randomised, placebo-controlled, double-blind and cross-over trial for treatment of dialysis–associated hypertension with telmisartan 80 mg once daily or placebo on top of standard antihypertensive treatment excluding other Renin-Angiotensin-System (RAS) blockers. In 29 patients after randomization we analysed BP after a treatment period of 8 weeks, while 13 started with telmisartan and 16 with placebo; after 8 weeks 11 continued with telmisartan and 12 with placebo after cross-over, respectively. Patients exhibited a significant reduction of systolic pre-HD BP from 141.9±21.8 before to 131.3±17.3 mmHg after the first treatment period with telmisartan or placebo. However, no average significant influence of telmisartan was observed compared to placebo. The latter may be due to a large inter-individual variability of BP responses reaching from a 40 mmHg decrease under placebo to 40 mmHg increase under telmisartan. Antihypertensive co-medication was changed for clinical reasons in 7 out of 21 patients with no significant difference between telmisartan and placebo groups. Our starting hypothesis, that telmisartan on top of standard therapy lowers systolic office BP in HD patients could not be confirmed. In conclusion, this small trial indicates that testing antihypertensive drug efficacy in HD patients is challenging due to complicated standardization of concomitant medication and other confounding factors, e.g. volume status, salt load and neurohormonal activation, that influence BP control in HD patients.

Trial Registration

Clinicaltrialsregister.eu 2005-005021-60  相似文献   
753.
To assess how ecological and morphological disparity is interrelated in the adaptive radiation of Antarctic notothenioid fish we used patterns of opercle bone evolution as a model to quantify shape disparity, phylogenetic patterns of shape evolution, and ecological correlates in the form of stable isotope values. Using a sample of 25 species including representatives from four major notothenioid clades, we show that opercle shape disparity is higher in the modern fauna than would be expected under the neutral evolution Brownian motion model. Phylogenetic comparative methods indicate that opercle shape data best fit a model of directional selection (Ornstein–Uhlenbeck) and are least supported by the “early burst” model of adaptive radiation. The main evolutionary axis of opercle shape change reflects movement from a broad and more symmetrically tapered opercle to one that narrows along the distal margin, but with only slight shape change on the proximal margin. We find a trend in opercle shape change along the benthic–pelagic axis, underlining the importance of this axis for diversification in the notothenioid radiation. A major impetus for the study of adaptive radiations is to uncover generalized patterns among different groups, and the evolutionary patterns in opercle shape among notothenioids are similar to those found among other adaptive radiations (three‐spined sticklebacks) promoting the utility of this approach for assessing ecomorphological interactions on a broad scale.  相似文献   
754.

Objectives

Genome-wide association studies have facilitated the identification of over 30 susceptibility loci for rheumatoid arthritis (RA). However, evidence for a number of potential susceptibility genes have not so far reached genome-wide significance in studies of Caucasian RA.

Methods

A cohort of 4286 RA patients from across Europe and 5642 population matched controls were genotyped for 25 SNPs, then combined in a meta-analysis with previously published data.

Results

Significant evidence of association was detected for nine SNPs within the European samples. When meta-analysed with previously published data, 21 SNPs were associated with RA susceptibility. Although SNPs in the PTPN2 gene were previously reported to be associated with RA in both Japanese and European populations, we show genome-wide evidence for a different SNP within this gene associated with RA susceptibility in an independent European population (rs7234029, P = 4.4×10−9).

Conclusions

This study provides further genome-wide evidence for the association of the PTPN2 locus (encoding the T cell protein tyrosine phosphastase) with Caucasian RA susceptibility. This finding adds to the growing evidence for PTPN2 being a pan-autoimmune susceptibility gene.  相似文献   
755.
Regulation of TRPM2 by extra- and intracellular calcium   总被引:2,自引:0,他引:2       下载免费PDF全文
TRPM2 is a calcium-permeable nonselective cation channel that is opened by the binding of ADP-ribose (ADPR) to a C-terminal nudix domain. Channel activity is further regulated by several cytosolic factors, including cyclic ADPR (cADPR), nicotinamide adenine dinucleotide phosphate (NAADP), Ca(2+) and calmodulin (CaM), and adenosine monophosphate (AMP). In addition, intracellular ions typically used in patch-clamp experiments such as Cs(+) or Na(+) can alter ADPR sensitivity and voltage dependence, complicating the evaluation of the roles of the various modulators in a physiological context. We investigated the roles of extra- and intracellular Ca(2+) as well as CaM as modulators of ADPR-induced TRPM2 currents under more physiological conditions, using K(+)-based internal saline in patch-clamp experiments performed on human TRPM2 expressed in HEK293 cells. Our results show that in the absence of Ca(2+), both internally and externally, ADPR alone cannot induce cation currents. In the absence of extracellular Ca(2+), a minimum of 30 nM internal Ca(2+) is required to cause partial TRPM2 activation with ADPR. However, 200 microM external Ca(2+) is as efficient as 1 mM Ca(2+) in TRPM2 activation, indicating an external Ca(2+) binding site important for proper channel function. Ca(2+) facilitates ADPR gating with a half-maximal effective concentration of 50 nM and this is independent of extracellular Ca(2+). Furthermore, TRPM2 currents inactivate if intracellular Ca(2+) levels fall below 100 nM irrespective of extracellular Ca(2+). The facilitatory effect of intracellular Ca(2+) is not mimicked by Mg(2+), Ba(2+), or Zn(2+). Only Sr(2+) facilitates TRPM2 as effectively as Ca(2+), but this is due to Sr(2+)-induced Ca(2+) release from internal stores rather than a direct effect of Sr(2+) itself. Together, these data demonstrate that cytosolic Ca(2+) regulates TRPM2 channel activation. Its facilitatory action likely occurs via CaM, since the addition of 100 microM CaM to the patch pipette significantly enhances ADPR-induced TRPM2 currents at fixed [Ca(2+)](i) and this can be counteracted by calmidazolium. We conclude that ADPR is responsible for TRPM2 gating and Ca(2+) facilitates activation via calmodulin.  相似文献   
756.
This study provides a detailed spatiotemporal interaction analysis between B cells, Th cells, and dendritic cells (DC) during the generation of protective antiviral B cell immunity. Following vesicular stomatitis virus (VSV) infection, conditional ablation of CD11c-positive DC at the time-point of infection did not impair extrafollicular plasma cell generation and Ig class switching. In contrast, the generation of Th and B cell responses following immunization with recombinant VSV-glycoprotein was DC-dependent. Furthermore, we show that the CCR7-dependent interplay of the three cell-types is crucial for virus-neutralizing B cell responses in the presence of limiting amounts of Ag. An immediate event following VSV infection was the CCR7-mediated interaction of VSV-specific B and Th cells at the T cell-B cell zone border that facilitated plasma cell differentiation and Th cell activation. Taken together, these experiments provide evidence for a direct, CCR7-orchestrated and largely DC-independent mutual activation of Th cells and Ag-specific B cells that is most likely a critical step during early immune responses against cytopathic viruses.  相似文献   
757.
CCR7 and its ligands, CCL19 and CCL21, are responsible for directing the migration of T cells and dendritic cells into lymph nodes, where these cells play an important role in the initiation of the immune response. Recently, we have shown that systemic application of CCL19-IgG is able to inhibit the colocalization of T cells and dendritic cells within secondary lymphoid organs, resulting in pronounced immunosuppression with reduced allograft rejection after organ transplantation. In this study, we demonstrate that the application of sustained high concentrations of either soluble or immobilized CCL19 and CCL21 elicits an inhibitory program in T cells. We show that these ligands specifically interfere with cell proliferation and IL-2 secretion of CCR7(+) cells. This could be demonstrated for human and murine T cells and was valid for both CD4(+) and CD8(+) T cells. In contrast, CCL19 had no inhibitory effect on T cells from CCR7 knockout mice, but CCR7(-/-) T cells showed a proliferative response upon TCR-stimulation similar to that of CCL19-treated wild-type cells. Furthermore, the inhibition of proliferation is associated with delayed degradation of the cyclin-dependent kinase (CDK) inhibitor p27(Kip1) and the down-regulation of CDK1. This shows that CCR7 signaling is linked to cell cycle control and that sustained engagement of CCR7, either by high concentrations of soluble ligands or by high density of immobilized ligands, is capable of inducing cell cycle arrest in TCR-stimulated cells. Thus, CCR7, a chemokine receptor that has been demonstrated to play an essential role during activation of the immune response, is also competent to directly inhibit T cell proliferation.  相似文献   
758.
The number of N-glycans (n) is a distinct feature of each glycoprotein sequence and cooperates with the physical properties of the Golgi N-glycan-branching pathway to regulate surface glycoprotein levels. The Golgi pathway is ultrasensitive to hexosamine flux for the production of tri- and tetra-antennary N-glycans, which bind to galectins and form a molecular lattice that opposes glycoprotein endocytosis. Glycoproteins with few N-glycans (e.g., TbetaR, CTLA-4, and GLUT4) exhibit enhanced cell-surface expression with switch-like responses to increasing hexosamine concentration, whereas glycoproteins with high numbers of N-glycans (e.g., EGFR, IGFR, FGFR, and PDGFR) exhibit hyperbolic responses. Computational and experimental data reveal that these features allow nutrient flux stimulated by growth-promoting high-n receptors to drive arrest/differentiation programs by increasing surface levels of low-n glycoproteins. We have identified a mechanism for metabolic regulation of cellular transition between growth and arrest in mammals arising from apparent coevolution of N-glycan number and branching.  相似文献   
759.
OBJECTIVE: To investigate a correlation between preoperative data from proton-MR-spectroscopy (1HMRS), genomic alterations (epidermal growth growth factor receptor [EGFR] gene amplification) and histomorphometric data from glioblastomas. STUDY DESIGN: In surgical specimens from 18 patients with glioblastomas, the degree of amplification of the gene for EGFR was determined in the region with the largest Ki-67 proliferation index by differential polymerase chain reaction. RESULTS: Correlation analysis showed significant positive correlation between degree of EGFR gene amplification and choline and total creatine (CHO/TCR) ratio, indicating increased membrane turnover. Cases with a high EGFR/interferon ratio showed a tendency toward a low lipid peak, whereas cases with a low EGFR/interferon ratio showed a large variation of the lipid peak. Differences were observed regarding quantitative histomorphologic data of tumor cell nuclei, especially nuclear size and shape. Together with the EGFR/interferon ratio, these morphometric data provided a good reclassification of cases with low and with high values for both spectroscopic variables by means of cross-validated linear discriminant analysis. CONCLUSION: The results provide further evidence for the biologic significance of metabolic data from preoperative 1HMRS, because these metabolic data showed a significant statistical relationship with histomorphology and a frequently occurring molecular biologic alteration (EGFR gene amplification) in glioblastomas.  相似文献   
760.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号