首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   459篇
  免费   50篇
  2022年   2篇
  2021年   4篇
  2020年   3篇
  2019年   6篇
  2018年   6篇
  2017年   12篇
  2016年   6篇
  2015年   15篇
  2014年   13篇
  2013年   15篇
  2012年   19篇
  2011年   14篇
  2010年   19篇
  2009年   16篇
  2008年   22篇
  2007年   25篇
  2006年   29篇
  2005年   20篇
  2004年   29篇
  2003年   25篇
  2002年   30篇
  2001年   22篇
  2000年   8篇
  1999年   7篇
  1998年   4篇
  1997年   7篇
  1996年   3篇
  1995年   7篇
  1994年   3篇
  1993年   4篇
  1992年   7篇
  1991年   8篇
  1990年   5篇
  1989年   2篇
  1988年   10篇
  1987年   10篇
  1986年   4篇
  1985年   2篇
  1984年   12篇
  1983年   7篇
  1982年   8篇
  1981年   2篇
  1980年   5篇
  1979年   2篇
  1978年   5篇
  1976年   2篇
  1968年   4篇
  1909年   2篇
  1906年   1篇
  1905年   1篇
排序方式: 共有509条查询结果,搜索用时 31 毫秒
51.
Nucleotide excision repair (NER) requires the concerted action of many different proteins that assemble at sites of damaged DNA in a sequential fashion. We have constructed a mathematical model delineating hallmarks and general characteristics for NER. We measured the assembly kinetics of the putative damage-recognition factor XPC-HR23B at sites of DNA damage in the nuclei of living cells. These and other in vivo kinetic data allowed us to scrutinize the dynamic behavior of the nucleotide excision repair process in detail. A sequential assembly mechanism appears remarkably advantageous in terms of repair efficiency. Alternative mechanisms for repairosome formation, including random assembly and preassembly, can readily become kinetically unfavorable. Based on the model, new experiments can be defined to gain further insight into this complex process and to critically test model predictions. Our work provides a kinetic framework for NER and rationalizes why many multiprotein processes within the cell nucleus show sequential assembly strategy.  相似文献   
52.
Traditional surgical methods for the reconstruction of cartilage defects rely on the transplantation of autologous and allogenous tissues. The disadvantages of these techniques are the limited availability of suitable tissues and the donor site morbidity of transplants. In addition, in cultured chondrocytes, the dedifferentiation of cells seems unavoidable during multiplication. In this study, we investigated the expression of distinct markers during the dedifferentiation of human chondrocytes (HC) and human mesenchymal stem cells (MSC) in cell culture using microarray technique, immunohistochemistry and RT-PCR. Transforming growth factor beta (TGFbeta) is a multifunctional peptide that plays play a crucial role in inducing and maintaining chondrogenic differentiation. In dedifferentiating chondrocytes, the gene for TGFbeta1 was constantly expressed, while the gene for TGFbeta2 was never expressed. The genes for TGFalpha, TGFbeta4 and TGFbetai were activated with ongoing dedifferentiation. TGFbeta-receptor 3 was constantly expressed, while the genes for the TGFbeta-receptors 1 and 2 were never expressed. Immunohistochemical staining for TGFbeta beta 3 revealed upregulation in the course of dedifferentiation. The genes for LTBP1 and LTBP2 were activated with ongoing dedifferentiation, whereas the gene for LTBP3 was constantly expressed, and negative results were obtained for the gene for LTBP4. The genes for LTBP1 and LTBP2 were activated with ongoing dedifferentiation. During chondrogenic differentiation, the MSCs constantly expressed TGFbeta1, beta2, beta3 and beta4. LTBP1, LTBP2 and TGFbeta-R3 were downregulated. In conclusion, TGFbeta3, TGFbeta4, TGFbetai, LTBP1 and LTBP2 may assist the process of dedifferentiation, while TGFbeta1 and beta2 might not be involved in this process. Of the TGFbeta-receptors, only type 3 might be involved in dedifferentiation.  相似文献   
53.
Hydrostatic pressure is a useful tool in the study of varied fields such as protein aggregation, association, folding, ligand binding, and allostery. Application of pressure can have a significant effect on the pK(a) values of buffers commonly used for biochemical analysis. Consequently, cationic buffers, rather than neutral ones, are generally used to minimize pH effects; however, even with these buffers, the change in pH over 3 kbar may be consequential in highly pH-sensitive biochemical systems. Using fluorescence-based assays, we have systematically examined the effects of pressure on various buffers in the neutral pH range. We show that many commonly used cationic and Good's buffers increase in pH with pressure on the order of 0.1 to 0.3 pH units/kbar, in agreement with other published values. Carboxylates and phosphate decrease in pH to a similar extent. Buffer mixtures, composed of both cationic and carboxylate or phosphate components, are shown to be an order of magnitude less pressure sensitive than the individual component buffers. Using various relative concentrations of Tris and either phosphate, tricarballylate (1,2,3-propanetricarboxylate), or CDA (1,1-cyclohexane diacetate) at pH values between 7 and 8 yields baroresistant buffer mixtures. Buffer mixtures can be optimized for a specific pH, and a list of mixtures is presented for general laboratory use.  相似文献   
54.
55.
Ribonuclease Sa (RNase Sa) contains no tryptophan (Trp) residues. We have added single Trp residues to RNase Sa at sites where Trp is found in four other microbial ribonucleases, yielding the following variants of RNase Sa: Y52W, Y55W, T76W, and Y81W. We have determined crystal structures of T76W and Y81W at 1.1 and 1.0 A resolution, respectively. We have studied the fluorescence properties and stabilities of the four variants and compared them to wild-type RNase Sa and the other ribonucleases on which they were based. Our results should help others in selecting sites for adding Trp residues to proteins. The most interesting findings are: 1), Y52W is 2.9 kcal/mol less stable than RNase Sa and the fluorescence intensity emission maximum is blue-shifted to 309 nm. Only a Trp in azurin is blue-shifted to a greater extent (308 nm). This blue shift is considerably greater than observed for Trp71 in barnase, the Trp on which Y52W is based. 2), Y55W is 2.1 kcal/mol less stable than RNase Sa and the tryptophan fluorescence is almost completely quenched. In contrast, Trp59 in RNase T1, on which Y55W is based, has a 10-fold greater fluorescence emission intensity. 3), T76W is 0.7 kcal/mol more stable than RNase Sa, indicating that the Trp side chain has more favorable interactions with the protein than the threonine side chain. The fluorescence properties of folded Y76W are similar to those of the unfolded protein, showing that the tryptophan side chain in the folded protein is largely exposed to solvent. This is confirmed by the crystal structure of the T76W which shows that the side chain of the Trp is only approximately 7% buried. 4), Y81W is 0.4 kcal/mol less stable than RNase Sa. Based on the crystal structure of Y81W, the side chain of the Trp is 87% buried. Although all of the Trp side chains in the variants contribute to the unusual positive circular dichroism band observed near 235 nm for RNase Sa, the contribution is greatest for Y81W.  相似文献   
56.
Although the use of IFN-alpha in combination with ribavirin has improved the treatment efficacy of chronic hepatitis C virus (HCV) infection, 20-50% of patients still fail to eradicate the virus depending on the HCV genotype. Recently, overexpression of HCV core protein has been shown to inhibit IFN signaling and induce SOCS-3 expression. Aim of this study was to examine the putative role of SOCS proteins in IFN resistance. By Western blot analysis, a 4-fold induction of STAT-1/3 phosphorylation by IFN-alpha was observed in mock-transfected HepG2 clones. In contrast, IFN-induced STAT-1/3 phosphorylation was considerably downregulated by SOCS-1/3 overexpression. In mock-transfected cells, IFN-alpha induced 2',5'-OAS and myxovirus resistance A (MxA) promoter activity 40- to 80-fold and 10- to 35-fold, respectively, and this effect was abrogated in SOCS-1/3 overexpressing cells. As detected by Northern blot technique, IFN-alpha potently induced 2',5'-OAS and MxA mRNA expression in the control clones. Overexpression of SOCS-1 completely abolished both 2',5'-OAS and MxA mRNA expression, whereas SOCS-3 mainly inhibited 2',5'-OAS mRNA expression. Our results demonstrate that SOCS-1 and SOCS-3 proteins inhibit IFN-alpha-induced activation of the Jak-STAT pathway and expression of the antiviral proteins 2',5'-OAS and MxA. These data suggest a potential role of SOCS proteins in IFN resistance during antiviral treatment.  相似文献   
57.
Protein translocons of the mammalian endoplasmic reticulum are composed of numerous functional components whose organization during different stages of the transport cycle in vivo remains poorly understood. We have developed generally applicable methods based on fluorescence resonance energy transfer (FRET) to probe the relative proximities of endogenously expressed translocon components in cells. Examination of substrate-engaged translocons revealed oligomeric assemblies of the Sec61 complex that were associated to varying degrees with other essential components including the signal recognition particle receptor TRAM and the TRAP complex. Remarkably, these components not only remained assembled but also had a similar, yet distinguishable, organization both during and after nascent chain translocation. The persistence of preassembled and complete translocons between successive rounds of transport may facilitate highly efficient translocation in vivo despite temporal constraints imposed by ongoing translation and a crowded cellular environment.  相似文献   
58.
Distal renal tubular acidosis (dRTA), a kidney disease resulting in defective urinary acidification, can be caused by dominant or recessive mutations in the kidney Cl-/HCO3- anion exchanger (kAE1), a glycoprotein expressed in the basolateral membrane of alpha-intercalated cells. We compared the effect of two dominant (R589H and S613F) and two recessive (S773P and G701D) dRTA point mutations on kAE1 trafficking in Madin-Darby canine kidney (MDCK) epithelial cells. In contrast to wild-type (WT) kAE1 that was localized to the basolateral membrane, the dominant mutants (kAE1 R589H and S613F) were retained in the endoplasmic reticulum (ER) in MDCK cells, with a few cells showing in addition some apical localization. The recessive mutant kAE1 S773P, while misfolded and largely retained in the ER in non-polarized MDCK cells, was targeted to the basolateral membrane after polarization. The other recessive mutants, kAE1 G701D and designed G701E, G701R but not G701A or G701L mutants, were localized to the Golgi in both non-polarized and polarized cells. The results suggest that introduction of a polar mutation into a transmembrane segment resulted in Golgi retention of the recessive G701D mutant. When coexpressed, the dominant mutants retained kAE1 WT intracellularly, while the recessive mutants did not. Coexpression of recessive G701D and S773P mutants in polarized cells showed that these proteins could interact, yet no G701D mutant was detected at the basolateral membrane. Therefore, compound heterozygous patients expressing both recessive mutants (G701D/S773P) likely developed dRTA due to the lack of a functional kAE1 at the basolateral surface of alpha-intercalated cells.  相似文献   
59.
A viscometer for bedside blood measurements was developed, consisting of an oscillating resonator probe mounted directly into a disposable vacutainer tube for blood withdrawal. It was tested in vitro on blood samples with variable hematocrits (20-60%), increasing fibrinogen concentrations (0-20 g/l), increasing concentrations of an admixed radiographic contrast medium and erythrocyte suspensions in dextran 40 and dextran 70. Results were compared with those obtained with a conventional Couette viscometer. Oscillating viscometry yielded generally higher values than Couette viscometry, and had a good sensitivity for changes in hematocrit with a good correlation between the two methods (r=0.96, p<0.0001). Oscillating viscosity depended on the resonator frequency, it was higher at 3900 Hz than at 215 Hz, suggesting a viscoelastic behavior of blood. Erythrocyte aggregation, induced by increasing fibrinogen concentrations or dextran 70, affected oscillating viscometry. At a high frequency, i.e. a smaller penetration depth of the shear wave, oscillating viscosity tended to decrease, which suggests a depletion of the boundary layer from erythrocytes when they aggregate. At low frequency with a deeper shear wave penetration (about 50 microm), erythrocyte aggregation increased oscillating viscosity. Bedside tests in 17 patients with coronary heart disease and 10 controls confirmed the easy practicability of the test and showed lower oscillating viscosity in these patients despite higher fibrinogen concentrations presumably due to increased erythrocyte aggregation. We conclude that oscillating viscometry is an interesting bedside test, which is capable of providing new information on the biorheology of the erythrocyte-poor boundary layer near the vessel wall.  相似文献   
60.
Bustos SP  Reithmeier RA 《Biochemistry》2006,45(3):1026-1034
Anion exchanger 1 (AE1, Band 3) is the predominant membrane protein of erythrocytes. Its 52 kDa C-terminal domain functions as a chloride-bicarbonate exchanger, while its 43 kDa N-terminal cytosolic domain (cdb3) anchors the cytoskeleton to the membrane. Several proteins bind to cdb3, including protein 4.2, a cytoskeletal protein. Three mutations in cdb3 are associated with hereditary spherocytosis (HS) and decreased levels of protein 4.2 in erythrocytes. In this study, these cdb3 mutants (E40K, G130R, and P327R) were expressed in and purified from Escherichia coli. Sedimentation experiments showed that the wild-type and mutant proteins are dimers. No difference in secondary structure between mutant and wild-type proteins was detected using circular dichroism (CD) analysis. The wild-type and mutant proteins underwent similar pH-dependent conformational changes when monitored by intrinsic tryptophan fluorescence. Urea denaturation of proteins monitored by intrinsic fluorescence showed no significant differences in the sensitivity of the proteins to this chemical denaturant. Thermal denaturation monitored by CD and by calorimetry revealed that only the P327R mutant had a significantly lower midpoint of transition (approximately 5 degrees C) than the wild-type protein, suggesting a modest decrease in stability. The results show that the HS mutant cdb3 proteins do not differ to any great extent in structure from the wild-type protein, suggesting that the HS mutations may directly affect protein 4.2 binding.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号