首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3270篇
  免费   297篇
  2021年   38篇
  2020年   29篇
  2019年   20篇
  2018年   39篇
  2017年   28篇
  2016年   67篇
  2015年   104篇
  2014年   107篇
  2013年   139篇
  2012年   183篇
  2011年   207篇
  2010年   146篇
  2009年   127篇
  2008年   204篇
  2007年   203篇
  2006年   210篇
  2005年   162篇
  2004年   172篇
  2003年   165篇
  2002年   173篇
  2001年   46篇
  2000年   54篇
  1999年   51篇
  1998年   44篇
  1997年   55篇
  1996年   47篇
  1995年   49篇
  1994年   36篇
  1993年   27篇
  1992年   33篇
  1991年   40篇
  1990年   33篇
  1989年   44篇
  1988年   48篇
  1987年   24篇
  1986年   22篇
  1985年   26篇
  1984年   36篇
  1983年   21篇
  1982年   28篇
  1981年   27篇
  1980年   20篇
  1979年   24篇
  1978年   12篇
  1977年   17篇
  1976年   15篇
  1975年   20篇
  1972年   11篇
  1969年   13篇
  1968年   10篇
排序方式: 共有3567条查询结果,搜索用时 15 毫秒
161.
beta-Thymosins are polypeptides that bind monomeric actin and thereby function as actin buffers in many cells. We show that during zebrafish development, &bgr;-thymosin expression is tightly correlated with neuronal growth and differentiation. It is transiently expressed in a subset of axon-extending neurons, essentially primary neurons that extend long axons, glia and muscle. Non-neuronal expression in the brain is restricted to a subset of glia surrounding newly forming axonal tracts. Skeletal muscle cells in somites, jaw and fin express beta-thymosin during differentiation, coinciding with the time of innervation. Injection of beta-thymosin antisense RNA into zebrafish embryos results in brain defects and impairment of the development of beta-thymosin-associated axon tracts. Furthermore, irregularities in somite formation can be seen in a subset of embryos. Compared to wild-type, antisense-injected embryos show slightly weaker and more diffuse engrailed staining at the midbrain-hindbrain boundary and a strong reduction of Isl-1 labeling in Rohon Beard and trigeminal neurons. The decreased expression is not based on a loss of neurons indicating that beta-thymosin may be involved in the maintenance of the expression of molecules necessary for neuronal differentiation. Taken together, our results strongly indicate that beta-thymosin is an important regulator of development.  相似文献   
162.
163.
Age-dependent neurodegeneration resulting from widespread apoptosis of neurons and glia characterize the Drosophila Swiss Cheese (SWS) mutant. Neuropathy target esterase (NTE), the vertebrate homologue of SWS, reacts with organophosphates which initiate a syndrome of axonal degeneration. NTE is expressed in neurons and a variety of nonneuronal cell types in adults and fetal mice. To investigate the physiological functions of NTE, we inactivated its gene by targeted mutagenesis in embryonic stem cells. Heterozygous NTE(+/-) mice displayed a 50% reduction in NTE activity but underwent normal organ development. Complete inactivation of the NTE gene resulted in embryonic lethality, which became evident after gastrulation at embryonic day 9 postcoitum (E9). As early as E7.5, mutant embryos revealed growth retardation which did not reflect impaired cell proliferation but rather resulted from failed placental development; as a consequence, massive apoptosis within the developing embryo preceded its resorption. Histological analysis indicated that NTE is essential for the formation of the labyrinth layer and survival and differentiation of secondary giant cells. Additionally, impairment of vasculogenesis in the yolk sacs and embryos of null mutant conceptuses suggested that NTE is also required for normal blood vessel development.  相似文献   
164.
Members of the Sp gene family are involved in a variety of developmental processes in both vertebrates and invertebrates. We identified the ortholog of the Drosophila Sp-1 gene in the red flour beetle Tribolium castaneum, termed T-Sp8 because of its close phylogenetic relationship to the vertebrate Sp8 genes. During early embryogenesis, T-Sp8 is seen in segmental stripes. During later stages, TSp8 is dynamically expressed in the limb buds of the Tribolium embryo. At the beginning of bud formation, TSp8 is uniformly expressed in all body appendages. As the limbs elongate, a ring pattern develops sequentially and the expression profile at the end of embryogenesis correlates with the final length of the appendage. In limbs that do not grow out like the labrum and the labium, T-Sp8 expression remains uniform, whereas a two-ring pattern develops in the longer antennae and the maxillae. In the legs that elongate even further, four rings of T-Sp8 expression can be seen at the end of leg development. The role of T-Sp8 for appendage development was tested using RNAi. Upon injection of double stranded T-Sp8 RNA, larvae develop with dwarfed appendages. Affected T-Sp8(RNAi) legs were tested for the presence of medial and distal positional values using the expression marker genes dachshund and Distal-less, respectively. The results show that a dwarfed TSp8(RNAi) leg consists of proximal, medial and distal parts and argues against T-Sp8 being a leg gap gene. Based on the differential expression pattern of T-Sp8 in the appendages of the head and the thorax and the RNAi phenotype, we hypothesise that T-Sp8 is involved in the regulation of limb-length in relation to body size - a process called allometric growth.  相似文献   
165.
In both insects and mammals, olfactory receptor neurons (ORNs) expressing specific olfactory receptors converge their axons onto specific glomeruli, creating a spatial map in the brain. We have previously shown that second order projection neurons (PNs) in Drosophila are prespecified by lineage and birth order to send their dendrites to one of approximately 50 glomeruli in the antennal lobe. How can a given class of ORN axons match up with a given class of PN dendrites? Here, we examine the cellular and developmental events that lead to this wiring specificity. We find that, before ORN axon arrival, PN dendrites have already created a prototypic map that resembles the adult glomerular map, by virtue of their selective dendritic localization. Positional cues that create this prototypic dendritic map do not appear to be either from the residual larval olfactory system or from glial processes within the antennal lobe. We propose instead that this prototypic map might originate from both patterning information external to the developing antennal lobe and interactions among PN dendrites.  相似文献   
166.
167.
A novel trienzyme sensor for the amperometric determination of lactate was constructed by immobilizing salicylate hydroxylase (SHL, E.C. 1.14.13.1), l-lactate dehydrogenase (LDH, E.C. 1.1.1.27), and pyruvate oxidase (PyOD, E.C. 1.2.3.3) on a Clark-type oxygen electrode. The enzymes were entrapped by a poly(carbamoyl) sulfonate (PCS) hydrogel on a Teflon membrane. LDH catalyzes the specific dehydrogenation of lactate consuming NAD(+). SHL catalyzes the irreversible decarboxylation and the hydroxylation of salicylate in the presence of oxygen and NADH produced by LDH. PyOD decarboxylates pyruvate using oxygen and phosphate. SHL and PyOD force the equilibrium of dehydrogenation of lactate by LDH to the product side by consuming NADH and pyruvate, respectively. Dissolved oxygen acts as an essential material for both PyOD and SHL during their respective enzymatic reactions. Therefore, an amplified signal, caused by the consumptions of dissolved oxygen by the two enzymes, was observed in the measurement of lactate. Regeneration of cofactor was found in the trienzyme system. A Teflon membrane was used to fabricate the sensor in order to avoid interferences. The sensor has a fast response (2s) and short recovery times (2 min). The total test time for a measurement by using this lactate sensor (4 min) was faster than using a commercial lactate testing kit (up to 10 min). The sensor has a linear range between 10 and 400 microM lactate, with a detection limit of 4.3 microM. A good agreement (R2 = 0.9984) with a commercial lactate testing kit was obtained in beverage sample measurements.  相似文献   
168.
Sialic acids as terminal residues of oligosaccharide chains play crucial roles in several cellular recognition events. Exploiting the selective affinity of Achatinin-H toward N-acetyl-9-O-acetylneuraminic acid-alpha2-6-GalNAc, we have demonstrated the presence of 9-O-acetylated sialoglycoproteins (Neu5,9Ac(2)-GPs) on lymphoblasts of 70 children with acute lymphoblastic leukemia (ALL) and on leukemic cell lines by fluorimetric HPLC and flow cytometric analysis. This study aims to assess the structural aspect of the glycotope of Neu5,9Ac(2)-GPs(ALL) and to evaluate whether these disease-specific molecules can be used to monitor the clinical outcome of ALL. The Neu5,9Ac(2)-GPs(ALL) were affinity-purified, and three distinct leukemia-specific molecular determinants (135, 120, and 90 kDa) were demonstrated by SDS-PAGE, western blotting, and isoelectric focusing. The carbohydrate epitope of Neu5,9Ac(2)-GPs(ALL) was confirmed by using synthetic sialic acid analogs. The enhanced presence of anti-Neu5,9Ac(2)-GP(ALL) antibody in ALL patients prompted us to develop an antigen-ELISA using purified Neu5,9Ac(2)-GPs(ALL) as coating antigens. Purified antigen was able to detect leukemia-specific antibodies at presentation of disease, which gradually decreased with treatment. Longitudinal monitoring of 18 patients revealed that in the early phase of the treatment patients with lower anti-Neu5,9Ac(2)-GPs showed a better prognosis. Minimal cross-reactivity was observed in other hematological disorders (n = 50) like chronic myeloid leukemia, acute myelogenous leukemia, chronic lymphocytic leukemia, and non-Hodgkin's lymphoma as well as normal healthy individuals (n = 21). This study demonstrated the potential of purified Neu5,9Ac(2)-GPs(ALL) as an alternate tool for detection of anti-Neu5,9Ac(2)-GP antibodies to be helpful for diagnosis and monitoring of childhood ALL patients.  相似文献   
169.
Modulating the amount of radiation-induced apoptosis by administering antioxidant vitamins offers a possible way to influence radiation-induced side effects in normal tissues. Therefore, we investigated the effect of beta-carotene, vitamin C and alpha-tocopherol on radiation-induced apoptosis in cells in culture. Human T-lymphoblastic MOLT-3 cells were irradiated with a dose of 3 Gy 1 h after or immediately prior to the addition of vitamins in three concentrations (0.01 microM, 1 microM and 100 microM). Eight hours later, apoptosis was scored morphologically by staining the nuclear DNA with Hoechst 33342. When given prior to irradiation, beta-carotene and vitamin E reduced the amount of radiation-induced apoptosis significantly at concentrations of 0.01 microM and 1 microM. In contrast, vitamin C did not show any protective effect when given at these two concentrations and caused a slight but significant radiosensitization at 100 microM. At 0.01 microM, all combinations of two vitamins showed a protective effect. This was also observed for the combination of all three vitamins at concentrations of 0.01 and 1 microM. When given immediately after irradiation, each of the three vitamins showed a protective effect at 0.01 microM. In addition, the combination of alpha-tocopherol and vitamin C reduced radiation-induced apoptosis slightly when given at 1 microM. In all other cases, no statistically significant modulation of radiation-induced apoptosis was observed. In our experimental system, the protective effect of beta-carotene and vitamin E was dependent on concentration and occurred only in the micromolar and sub-micromolar concentration range, while vitamin C alone, but not in combinations, had a sensitizing effect, thus arguing for a careful consideration of vitamin concentrations in clinical settings.  相似文献   
170.
Cytoplasmic assembly of Sm-class small nuclear ribonucleoproteins (snRNPs) is a central process in eukaryotic gene expression. A large macromolecular complex containing the survival of motor neurons (SMN) protein is required for proper snRNP assembly in vivo. Defects in SMN function lead to a human neuromuscular disorder, spinal muscular atrophy (SMA). SMN protein localizes to both nuclear and cytoplasmic compartments, and a reduction in nuclear levels of SMN is correlated with the disease. The mechanism of SMN nuclear import, however, is unknown. Using digitonin-permeabilized cells, we show that SMN import depends on the presence of Sm snRNPs. Conversely, import of labeled U1 snRNPs was SMN complex dependent. Thus, import of SMN and U snRNPs are coupled in vitro. Furthermore, we identify nuclear import defects in SMA patient-derived SMN mutants, uncovering a potential mechanism for SMN dysfunction.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号