首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   83篇
  免费   9篇
  92篇
  2021年   1篇
  2019年   1篇
  2017年   1篇
  2016年   5篇
  2015年   7篇
  2014年   5篇
  2013年   2篇
  2012年   1篇
  2011年   2篇
  2010年   4篇
  2009年   6篇
  2008年   1篇
  2007年   5篇
  2006年   2篇
  2005年   7篇
  2004年   3篇
  2003年   4篇
  2001年   1篇
  2000年   3篇
  1998年   5篇
  1997年   1篇
  1996年   1篇
  1995年   2篇
  1994年   2篇
  1990年   1篇
  1989年   1篇
  1988年   3篇
  1984年   1篇
  1981年   2篇
  1979年   3篇
  1978年   2篇
  1977年   2篇
  1976年   1篇
  1975年   1篇
  1968年   3篇
排序方式: 共有92条查询结果,搜索用时 15 毫秒
31.
Abstract— 2-Keto-4-pentenoic acid, a potent inhibitor of brain glutamate decarboxylase (Orlowski et al., 1977) was prepared by oxidative deamination of l -allylglycine with snake venom l -amino acid oxidase. In the presence of glutamate the keto acid is a competitive inhibitor of the enzyme with respect to glutamate; its Ki is 2.4 ± 10?6m . After preincubation of brain glutamate decarboxylase with 2-keto-4-pentenoic acid in the absence of glutamate, a slow and incomplete reactivation is obtained by prolonged dialysis, Sephadex gel-filtration, and dilution, suggesting the formation of a slowly dissociating enzyme-inhibitor complex and partial inactivation of the enzyme. In vivo inhibition of brain glutamate decarboxylase after administration of allylglycine is maximal after 2-8 h with activity returning to normal after 16 h. The inhibition of the enzyme after administration of d -allylglycine was greatest in the cerebellum and the medulla-pons area, the sites of the highest activity of d -amino acid oxidase. These results are interpreted as strongly supporting the postulate that allylglycine-induced inhibition of brain glutamate decarboxylase is due to the in vivo formation of 2-keto-4-pentenoic acid.  相似文献   
32.
33.
Zeta-crystallin/quinone reductase (CRYZ) is an NADPH oxidoreductase expressed at very high levels in the lenses of two groups of mammals: camelids and some hystricomorph rodents. It is also expressed at very low levels in all other species tested. Comparative analysis of the mechanisms mediating the high expression of this enzyme/crystallin in the lens of the Ilama (Lama guanacoe) and the guinea pig (Cavia porcellus) provided evidence for independent recruitment of this enzyme as a lens crystallin in both species and allowed us to elucidate for the first time the mechanism of lens recruitment of an enzyme- crystallin. The data presented here show that in both species such recruitment most likely occurred through the generation of new lens promoters from nonfunctional intron sequences by the accumulation of point mutations and/or small deletions and insertions. These results further support the idea that recruitment of CRYZ resulted from an adaptive process in which the high expression of CRYZ in the lens provides some selective advantage rather than from a purely neutral evolutionary process.   相似文献   
34.
35.
36.

Background

Cardiac time intervals have been described as a measure of cardiac performance, where prolongation, shortening and delay of the different time intervals have been evaluated as markers of cardiac dysfunction. A relatively recently developed method with improved ability to measure cardiac events is Tissue Doppler Imaging (TDI), allowing accurate measurement of myocardial movements.

Methods

We propose the state diagram of the heart as a new visualization tool for cardiac time intervals, presenting comparative, normalized data of systolic and diastolic performance, providing a more complete overview of cardiac function. This study aimed to test the feasibility of the state diagram method by presenting examples demonstrating its potential use in the clinical setting and by performing a clinical study, which included a comparison of the state diagram method with established echocardiography methods (E/E' ratio, LVEF and WMSI). The population in the clinical study consisted of seven patients with non ST-elevation myocardial infarction (NSTEMI) and seven control subjects, individually matched according to age and gender. The state diagram of the heart was generated from TDI curves from seven positions in the myocardium, visualizing the inter- and intraventricular function of the heart by displaying the cardiac phases.

Results

The clinical examples demonstrated that the state diagram allows for an intuitive visualization of pathological patterns as ischemia and dyssynchrony. Further, significant differences in percentage duration between the control group and the NSTEMI group were found in eight of the totally twenty phases (10 phases for each ventricle), e.g. in the transition phases (Pre-Ejection and Post-Ejection). These phases were significantly longer (> 2.18%) for the NSTEMI group than for the control group (p < 0.05). No significant differences between the groups were found for the established echocardiography methods.

Conclusion

The test results clearly indicate that the state diagram has potential to be an efficient tool for visualization of cardiac dysfunction and for detection of NSTEMI.  相似文献   
37.
Systems analysis of iron metabolism: the network of iron pools and fluxes   总被引:1,自引:0,他引:1  

Background  

Every cell of the mammalian organism needs iron as trace element in numerous oxido-reductive processes as well as for transport and storage of oxygen. The very versatility of ionic iron makes it a toxic entity which can catalyze the production of radicals that damage vital membranous and macromolecular assemblies in the cell. The mammalian organism maintains therefore a complex regulatory network of iron uptake, excretion and intra-body distribution. Intracellular regulation in different cell types is intertwined with a global hormonal signalling structure. Iron deficiency as well as excess of iron are frequent and serious human disorders. They can affect every cell, but also the organism as a whole.  相似文献   
38.

Background

The pea aphid Acyrthosiphon pisum has two modes of reproduction: parthenogenetic during the spring and summer and sexual in autumn. This ability to alternate between reproductive modes and the emergence of clonal populations under favorable conditions make this organism an interesting model for genetic and epigenetic studies. The pea aphid hosts different types of endosymbiotic bacteria within bacteriocytes which help the aphids survive and adapt to new environmental conditions and habitats. The obligate endosymbiont Buchnera aphidicola has a drastically reduced and stable genome, whereas facultative endosymbionts such as Regiella insecticola have large and dynamic genomes due to phages, mobile elements and high levels of genetic recombination. In previous work, selection toward cold adaptation resulted in the appearance of parthenogenetic A. pisum individuals characterized by heavier weights and remarkable green pigmentation.

Results

Six adenine-methylated DNA fragments were isolated from genomic DNA (gDNA) extracted from the cold-induced green variant of A. pisum using deoxyadenosine methylase (Dam) by digesting the gDNA with the restriction enzymes DpnI and DpnII, which recognize the methylated and unmethylated GATC sites, respectively. The six resultant fragments did not match any sequence in the A. pisum or Buchnera genomes, implying that they came from facultative endosymbionts. The A1 fragment encoding a putative transposase and the A6 fragment encoding a putative helicase were selected for further comparison between the two A. pisum variants (green and orange) based on Dam analysis followed by PCR amplification. An association between adenine methylation and the two A. pisum variants was demonstrated by higher adenine methylation levels on both genes in the green variant as compared to the orange one.

Conclusion

Temperature selection may affect the secondary endosymbiont and the sensitive Dam involved in the survival and adaptation of aphids to cold temperatures. There is a high degree of adenine methylation at the GATC sites of the endosymbiont genes at 8°C, an effect that disappears at 22°C. We suggest that endosymbionts can be modified or selected to increase host fitness under unfavorable climatic conditions, and that the phenotype of the newly adapted aphids can be inherited.

Electronic supplementary material

The online version of this article (doi:10.1186/1471-2164-15-999) contains supplementary material, which is available to authorized users.  相似文献   
39.

Background

The detection of meningococcal outbreaks relies on serogrouping and epidemiologic definitions. Advances in molecular epidemiology have improved the ability to distinguish unique Neisseria meningitidis strains, enabling the classification of isolates into clones. Around 98% of meningococcal cases in the United States are believed to be sporadic.

Methods

Meningococcal isolates from 9 Active Bacterial Core surveillance sites throughout the United States from 2000 through 2005 were classified according to serogroup, multilocus sequence typing, and outer membrane protein (porA, porB, and fetA) genotyping. Clones were defined as isolates that were indistinguishable according to this characterization. Case data were aggregated to the census tract level and all non-singleton clones were assessed for non-random spatial and temporal clustering using retrospective space-time analyses with a discrete Poisson probability model.

Results

Among 1,062 geocoded cases with available isolates, 438 unique clones were identified, 78 of which had ≥2 isolates. 702 cases were attributable to non-singleton clones, accounting for 66.0% of all geocoded cases. 32 statistically significant clusters comprised of 107 cases (10.1% of all geocoded cases) were identified. Clusters had the following attributes: included 2 to 11 cases; 1 day to 33 months duration; radius of 0 to 61.7 km; and attack rate of 0.7 to 57.8 cases per 100,000 population. Serogroups represented among the clusters were: B (n = 12 clusters, 45 cases), C (n = 11 clusters, 27 cases), and Y (n = 9 clusters, 35 cases); 20 clusters (62.5%) were caused by serogroups represented in meningococcal vaccines that are commercially available in the United States.

Conclusions

Around 10% of meningococcal disease cases in the U.S. could be assigned to a geotemporal cluster. Molecular characterization of isolates, combined with geotemporal analysis, is a useful tool for understanding the spread of virulent meningococcal clones and patterns of transmission in populations.  相似文献   
40.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号