首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   165篇
  免费   42篇
  2021年   1篇
  2019年   1篇
  2018年   1篇
  2017年   1篇
  2016年   3篇
  2015年   5篇
  2014年   3篇
  2013年   5篇
  2012年   12篇
  2011年   13篇
  2010年   3篇
  2009年   5篇
  2008年   14篇
  2007年   14篇
  2006年   7篇
  2005年   8篇
  2004年   6篇
  2003年   7篇
  2002年   5篇
  2001年   8篇
  2000年   7篇
  1999年   8篇
  1998年   4篇
  1997年   5篇
  1996年   7篇
  1995年   5篇
  1994年   2篇
  1993年   4篇
  1992年   3篇
  1991年   2篇
  1990年   2篇
  1989年   2篇
  1988年   4篇
  1987年   1篇
  1986年   1篇
  1984年   5篇
  1982年   3篇
  1981年   1篇
  1980年   2篇
  1979年   2篇
  1978年   2篇
  1977年   3篇
  1974年   1篇
  1973年   1篇
  1972年   2篇
  1971年   1篇
  1969年   1篇
  1966年   1篇
  1964年   1篇
  1962年   1篇
排序方式: 共有207条查询结果,搜索用时 250 毫秒
81.
Background

Weevils of the genus Otiorhynchus are regarded as devastating pests in a wide variety of horticultural crops worldwide. So far, little is known on the presence of endosymbionts in Otiorhynchus spp.. Investigation of endosymbiosis in this genus may help to understand the evolution of different reproductive strategies in these weevils (parthenogenesis or sexual reproduction), host-symbiont interactions, and may provide a future basis for novel pest management strategy development. Here, we used a multitag 454 pyrosequencing approach to assess the bacterial endosymbiont diversity in larvae of four economically important Otiorhynchus species.

Results

High-throughput tag-encoded FLX amplicon pyrosequencing of a bacterial 16S rDNA fragment was used to characterise bacterial communities associated with different Otiorhynchus spp. larvae. By sequencing a total of ~48,000 PCR amplicons, we identified 49 different operational taxonomic units (OTUs) as bacterial endosymbionts in the four studied Otiorhynchus species. More than 90% of all sequence reads belonged either to the genus Rickettsia or showed homology to the phylogenetic group of “Candidatus Blochmannia” and to endosymbionts of the lice Pedicinus obtusus and P. badii. By using specific primers for the genera Rickettsia and “Candidatus Blochmannia”, we identified a new phylogenetic clade of Rickettsia as well as “Candidatus Nardonella” endosymbionts in Otiorhynchus spp. which are closely related to “Candidatus Blochmannia” bacteria.

Conclusions

Here, we used multitag 454 pyrosequencing for assessment of insect endosymbiotic communities in weevils. As 454 pyrosequencing generates only quite short sequences, results of such studies can be regarded as a first step towards identifying respective endosymbiotic species in insects. In the second step of our study, we analysed sequences of specific gene regions for a more detailed phylogeny of selected endosymbiont genera. As a result we identified the presence of Rickettsia and “Candidatus Nardonella endosymbionts in Otiorhynchus spp.. This knowledge is an important step in exploring bacteria-insect associations for potential use in insect pest control.

  相似文献   
82.
83.
The influence of different forms of substrate administration (either through the vapour phase or the liquid phase) on growth of two bacterial strains on biphenyl, 2-chlorobiphenyl, and 3,5-dichlorobiphenyl has been investigated. During growth with all three compounds, the availability of the substrate for the cells turned out to be the growth-limiting factor, even in liquid culture with excess substrate supplied to the medium. Growth on biphenyl and 2-chlorobiphenyl could be greatly enhanced if the substrate was distributed on a folded filter providing a large surface, which was placed in the vapour phase of the culture flask. This was not possible in the case of 3,5-dichlorobiphenyl. Here growth accelerated after accumulation of a yellowmeta cleavage product. Through measurement of the surface tension it was shown that this yellow compound possessed detergent-like activities, increasing the amount of 3,5-dichlorobiphenyl dissolved in the medium.  相似文献   
84.
We found that nonlethal lysosomal enzyme release from human peripheral blood leukocytes during phagocytosis of opsonized zymosan in vitro was modified by the oxygen tension under which the cells were incubated; with decreasing Po(2), zymosan-induced release of lysosomal enzymes was potentiated. The effect on enzyme release could not be attributed secondarily to an effect on phagocytosis, because, as others have reported, Po(2) had little effect on that response. Metabolic responses that accompany phagocytosis were also modified by oxygen tension. Stimulation of oxidation by way of the pentose cycle was further enhanced by increasing Po(2). Conversely, anaerobic glycolysis was promoted by decreasing oxygen tension. ATP levels fell as a function of time and concentration of phagocytic stimulus, mirroring lysosomal enzyme release as modified by Po(2). Cyclic AMP levels fell during phagocytosis and lysosomal enzyme release, a change that could act to facilitate lysosomal enzyme release. However, the fall in nucleotide level was greatest with highest Po(2) (i.e., when lysosomal enzyme release was least). The inverse relationship between oxidative metabolism and enzyme release suggested that a product of oxidative metabolism might adversely influence enzyme release. Sulfhydryl antioxidants (Cysteine, glutathione) and scavengers of oxygen-derived reactants (superoxide dismutase, catalase, benzoate, hypoxanthine, xanthine, histidine, azide) all potentiated zymosan- stimulated enzyme release. These findings are consistent with the interpretation that one or more factors (e.g., superoxide anion, hydrogen peroxide, hydroxyl radical, singlet oxygen), generated in association with the burst of oxidative metabolism which accompanies phagocytosis, acts to inhibit lysosomal enzyme release.  相似文献   
85.
WR211 and WR216 are derivatives of halobenzoate-degrading Pseudomonas sp. strain B13 into which the 117-kilobase TOL degradative plasmid pWW0 has been transferred from Pseudomonas putida mt-2. WR211 has lost the ability to grow on the TOL-specific substrate m-xylene but retains the ability to grow on its metabolite, m-toluate. An analysis of the induction of enzymes was consistent with WR211 carrying a nonfunctional regulatory gene, xy1R, WR216 is a spontaneous derivative of WR211 which grows on one of the TOL substrates and yet expresses the nonspecific toluate oxidase, which enables it to grow on the novel substrate 4-chlorobenzoate. In addition to the xy1R lesion inherited from WR211, WR216 appears to carry a mutation in the structural gene for catechol 2,3-oxygenase, xy1E. The plasmids in both strains were analyzed by restriction endonuclease digestion. pWW0-1211 in WR211 has a large deletion (39 kilobases) compared with pWW0 and appears to be identical to a previously described plasmid (pWW0-8) which encodes none of the TOL degradative functions. pWW0-1216 in WR216 has undergone a major structural reorganization relative to its parent, pWW0-1211. This plasmid has a smaller deletion (19 kilobases), which is staggered relative to the deletion in pWW0-1211, and in addition it has two 3-kilobase insertions of unknown origin, one of which appears to cause the xylE mutation.  相似文献   
86.
The hybrid pathway for chlorobenzoate metabolism was studied in WR211 and WR216, which were derived from Pseudomonas sp. B13 by acquisition of TOL plasmid pWW0 from Pseudomonas putida mt-2. Chlorobenzoates are utilized readily by these strains when meta cleavage of chlorocatechols is suppressed. When WR211 utilizes 3-chlorobenzoate (3CB), the expression of catechol 2,3-dioxygenase (C23O) and the catabolic activities for chloroaromatics via the ortho pathway coexist as a consequence of inactivation of the meta cleavage activity by 3-chlorocatechol. Utilization of 4-chlorobenzoate (4CB) by WR216 presupposes the suppression of C23O by a spontaneous mutation in the structural gene, so that 4-chlorocatechol is not misrouted into the meta pathway. Such C23O- mutants were also selected when WR211 was grown continuously on 3CB. Our data explain why the phenotypic characters 3CB+ and Mtol+ (m-toluate) are compatible, whereas 4CB+ and Mtol+ are incompatible.  相似文献   
87.
The maleylacetate reductase of 3-chlorobenzoate-grown cells of Pseudomonas sp. strain B13 has been purified 50-fold. The enzyme converted 2-chloromaleylacetate to 3-oxoadipate with temporary occurrence of maleylacetate; 1 mol of chloride was eliminated during the conversion of 1 mol of 2-chloro- and 2,3-dichloromaleylacetate; 2 mol of NADH were consumed per mol of 2-chloro- and 2,3-dichloromaleylacetate while only 1 mol was necessary to catalyze the conversion of maleylacetate or 2-methylmaleylacetate. The maleylacetate reductase failed to use fumarylacetate as a substrate. The role of the enzyme in the chloroaromatics degradation is discussed.  相似文献   
88.
89.
Antibacterial quinolones inhibit type II DNA topoisomerases by stabilizing covalent topoisomerase-DNA cleavage complexes, which are apparently transformed into double-stranded breaks by cellular processes such as replication. We used plasmid pBR322 and two-dimensional agarose gel electrophoresis to examine the collision of replication forks with quinolone-induced gyrase-DNA cleavage complexes in Escherichia coli. Restriction endonuclease-digested DNA exhibited a bubble arc with discrete spots, indicating that replication forks had been stalled. The most prominent spot depended upon the strong gyrase binding site of pBR322, providing direct evidence that quinolone-induced cleavage complexes block bacterial replication forks in vivo. We differentiated between stalled forks that do or do not contain bound cleavage complex by extracting DNA under different conditions. Resealing conditions allow gyrase to efficiently reseal the transient breaks within cleavage complexes, while cleavage conditions cause the latent breaks to be revealed. These experiments showed that some stalled forks did not contain a cleavage complex, implying that gyrase had dissociated in vivo and yet the fork had not restarted at the time of DNA isolation. Additionally, some branched plasmid DNA isolated under resealing conditions nonetheless contained broken DNA ends. We discuss a model for the creation of double-stranded breaks by an indirect mechanism after quinolone treatment.  相似文献   
90.
The diamondback moth, Plutella xylostella (Linnaeus) has a cosmopolitan distribution and is one of the major pests on cruciferous plants. Biological control, especially with species of the genus Diadegma, has been successfully employed in several parts of the world, mainly in South East Asia. The taxonomy of this genus based on classical morphological characters is still unclear and misidentifications are reported. In the present study seven Diadegma species associated with P. xylostella were separated using polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) analyses. The second internal transcribed spacer (ITS2) of the ribosomal DNA (rDNA) was successfully amplified in all 167 individuals and digested using 11 different restriction enzymes. One restriction enzyme (CfoI) showed different restriction profiles in all species and also between two population samples of D. mollipla (Holmgren) from eastern and southern Africa. In addition, a new Diadegma species associated with P. xylostella from Ethiopia was discovered.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号