首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   188篇
  免费   18篇
  206篇
  2023年   2篇
  2022年   3篇
  2021年   11篇
  2020年   5篇
  2019年   9篇
  2018年   5篇
  2017年   6篇
  2016年   12篇
  2015年   8篇
  2014年   11篇
  2013年   11篇
  2012年   17篇
  2011年   14篇
  2010年   7篇
  2009年   7篇
  2008年   14篇
  2007年   4篇
  2006年   10篇
  2005年   10篇
  2004年   7篇
  2003年   5篇
  2002年   7篇
  2001年   2篇
  2000年   4篇
  1999年   1篇
  1998年   2篇
  1997年   1篇
  1996年   2篇
  1994年   2篇
  1991年   1篇
  1989年   1篇
  1988年   1篇
  1987年   1篇
  1986年   1篇
  1978年   1篇
  1955年   1篇
排序方式: 共有206条查询结果,搜索用时 0 毫秒
41.
Posttranslational matrix protein import into peroxisomes uses either one of the two peroxisomal targeting signals (PTS), PTS1 and PTS2. Unlike the PTS1 receptor Pex5p, the PTS2 receptor Pex7p is necessary but not sufficient to target cargo proteins into the peroxisomal matrix and requires coreceptors. Saccharomyces cerevisiae possesses two coreceptors, Pex18p and Pex21p, with a redundant but not a clearly defined function. To gain further insight into the early events of this import pathway, PTS2 pre-import complexes of S. cerevisiae were isolated and characterized by determination of size and protein composition in wild-type and different mutant strains. Mass spectrometric analysis of the cytosolic PTS2 pre-import complex indicates that Fox3p is the only abundant PTS2 protein under oleate growth conditions. Our data strongly suggest that the formation of the ternary cytosolic PTS2 pre-import complex occurs hierarchically. First, Pex7p recognizes cargo proteins through its PTS2 in the cytosol. In a second step, the coreceptor binds to this complex, and finally, this ternary 150 kDa pre-import complex docks at the peroxisomal membrane, where both the PTS1 and the PTS2 import pathways converge. Gel filtration analysis of membrane-bound subcomplexes suggests that Pex13p provides the initial binding partner at the peroxisomal membrane, whereas Pex14p assembles with Pex18p in high-molecular-weight complexes after or during dissociation of the PTS2 receptor.  相似文献   
42.
Inactivation of testosterone by specific hydroxylations is a main function of cytochrome P450 (P450, CYP) in the brain. Recent data imply that induction of brain P450s by neuroactive drugs alters steroid hormone levels and endocrine signalling, giving rise to endocrine disorders. In this study, we investigated this drug–hormone crosstalk in mouse brain. Phenytoin led to a significant increase of 2α-, 2β-, 6β-, 16α- and 16β-hydroxytestosterones, while 6α- and 15α-hydroxytestosterones showed no significant alteration of their metabolism compared with untreated controls. Inhibition of testosterone hydroxylation using the chemical inhibitors orphenadrine, chloramphenicol, ketoconazole and nifedipine as well as antibodies against CYP3A- and 2B-isoforms pointed to major role of Cyp3a11 and an only minor function of Cyp2b9/10 in mouse brain. Cyp3a11 revealed to be the major isoform affected by phenytoin. There was considerable overlap of Cyp3a11 and AR expression in neuronal structures of the limbic system, namely the hippocampus, amygdala, hypothalamus and thalamus. Phenytoin treatment led to an increase of both, Cyp3a11 and AR expression in the limbic system. Additionally, the coherence between CYP3A and AR expression was analysed in PC-12 cells. Inhibition of phenytoin-induced endogenous CYP3A2 and AR by ketoconazole led a reduction of their expression to basal levels. We conclude that Cyp3a11 plays a crucial role in directing drug action to hormonal response within the limbic system of mouse brain in a so-called drug–hormone crosstalk.  相似文献   
43.
UV matters in shoaling decisions   总被引:5,自引:0,他引:5  
Shoaling behaviour in fish is influenced by numerous factors, such as familiarity, kinship, group size and shoal composition. Grouping decisions are based on both olfactory and visual cues. The visual system of many vertebrates is extended into the ultraviolet (UV) wave range as in three-spined sticklebacks (Gasterosteus aculeatus, L.). We investigated whether the presence or absence of UV wavelengths has an influence on shoaling behaviour in this species. Reproductively non-active three-spined sticklebacks were given the choice between two shoals, equal in numbers of individuals, which could be seen either through a UV-transmitting [UV(+)] or a UV-blocking [UV(-)] filter. Test fish preferred to join the shoal seen under UV(+) conditions. Due to differences in quantal flux between the UV(+) and UV(-) filters used, control experiments with neutral-density optical filters were performed in order to clarify the role of luminance. Here, test fish spent significantly more time near shoals that were seen in a darker environment, suggesting a potential trade-off between UV radiation and lower brightness during shoal choice.To our knowledge, these results demonstrate for the first time that shoaling decisions are influenced by UV wavelengths.  相似文献   
44.
Root Architecture Responses: In Search of Phosphate   总被引:1,自引:0,他引:1  
Soil phosphate represents the only source of phosphorus for plants and, consequently, is its entry into the trophic chain. This major component of nucleic acids, phospholipids, and energy currency of the cell (ATP) can limit plant growth because of its low mobility in soil. As a result, root responses to low phosphate favor the exploration of the shallower part of the soil, where phosphate tends to be more abundant, a strategy described as topsoil foraging. We will review the diverse developmental strategies that can be observed among plants by detailing the effect of phosphate deficiency on primary and lateral roots. We also discuss the formation of cluster roots: an advanced adaptive strategy to cope with low phosphate availability observed in a limited number of species. Finally, we will put this work into perspective for future research directions.Plant embryogenesis generates a very primitive developmental blueprint with two apical meristems (shoot and root) that, unlike in animals, do not reflect the anatomy of the adult organism. The ability to form new organs is maintained throughout their lifecycle because of the sustained activity of these meristems as well as the presence of dedicated cells that dedifferentiate and generate new meristems. The continuous nature of plant development associated with their sessile lifestyle results in a strong dependency on their immediate environment. As a result, the study of plant development must not only focus on the fundamental molecular and cellular mechanisms but also, integrate their ability to perceive and respond to the environment. In this regard, plant root systems represent a good model, because they have a high level of developmental plasticity in response to water, nutrients, gravity, and mechanical characteristics of the soil as well as biotic interactions.Among the essential nutrients for plant growth and development, phosphorus is a key component of nucleic acids and phospholipids and present in soil in the form of either inorganic phosphate (Pi) or organophosphates. The former strongly interacts with divalent and trivalent cations. The latter has to be hydrolyzed to release phosphate for root uptake. The high sorption capacity of phosphate to soil particles results in a very low mobility and availability for uptake by plants. Therefore, the capacity of plants to find an adequate phosphate supply is directly correlated with their ability to explore the soil. Correspondingly, phosphorus deficiency induces changes in root system architecture as a key adaptive mechanism. A general strategy has been described under the term topsoil foraging that favors a shallower root system to explore the upper part of the soil, where phosphate tends to be more available because of the presence of organic matter and animal excrements. Although this term was first introduced to describe root system adaptation in bean (Phaseolus vulgaris; Lynch and Brown, 2001), the set of responses behind the topsoil foraging strategy has now been described in many other species (Panigrahy et al., 2009; Péret et al., 2011; Li et al., 2012; Shi et al., 2013). We will give an up-to-date overview of recent publications on developmental adaptations to low phosphate observed in diverse monocot and dicot species by focusing on the responses of the primary root (PR) and lateral roots. Finally, we will describe the evolutionarily advanced developmental adaptation to low phosphorus that has been found in several plant families’ (i.e. cluster or proteoid) root formation.  相似文献   
45.
A sensitive fluorometric assay for the quantification of phosphite has been developed. The assay uses the enzymatic oxidation of phosphite to phosphate by a recombinant phosphite dehydrogenase with NAD+ as cosubstrate to produce the highly fluorescent reaction product resorufin. The optimized assay can be carried out in a 96-well microtiter plate format for high-throughput screening purposes and has a detection limit of 0.25 nmol phosphite. We used the method to quantify phosphite levels in plant tissue extracts and to determine phosphite dehydrogenase activity in transgenic plants. The assay is suitable for other biological or environmental samples. Because phosphite is a widely used fungicide to protect plants from pathogenic oomycetes, the assay provides a cost-effective and easy-to-use method to monitor the fate of phosphite following application.  相似文献   
46.
47.
Neurodegeneration has been increasingly recognised as the leading structural correlate of disability progression in autoimmune diseases such as multiple sclerosis. Since calcium signalling is known to regulate the development of degenerative processes in many cell types, it is believed to play significant roles in mediating neurodegeneration. Because of its function as a major juncture linking various insults and injuries associated with inflammatory attack on neuronal cell bodies and axons, it provides potential for the development of neuroprotective strategies. This is of great significance because of the lack of neuroprotective agents presently available to supplement the current array of immunomodulatory treatments. In this review, we summarise the role that various calcium channels and pumps have been shown to play in the development of neurodegeneration under inflammatory autoimmune conditions. The identification of suitable targets might also provide insights into applications in non-inflammatory neurodegenerative diseases.  相似文献   
48.
Optimal defence theory (ODT) attempts to explain variation in plant secondary compounds between different species, different growth conditions and different parts of individual plants. The theory is widely applied to vascular plants and more recently also to seaweeds. Surprisingly, ODT has gained little attention as potential explanation on the distribution of lichen secondary metabolites. In the present study, we analysed intrathalline variation in total phenol content and phenol spectra between reproductive and somatic structures of three foliose lichens, Xanthoria parietina , Vulpicida pinastri and Hypogymnia physodes . The results showed that the concentration of phenolic compounds is higher in sorediate than in non-sorediate lobe ends of V. pinastri and H. physodes as well as in apothecia of X. parietina compared to other parts of the thallus. These results were in accordance with ODT predicting higher allocation of phenols in structures that are most important for the fitness of an individual genet or ramet. This pattern was parallel in all species regardless whether the compounds originate from either acetate-mevalonate or shikimic acid pathways. Moreover, both sexual ( X. parietina apothecia) and asexual (soralia of V. pinastri and H. physodes ) reproductive structures were higher in phenols compared to somatic tissue.  相似文献   
49.
50.
The dimerisation of Raf kinases involves a central cluster within the kinase domain, the dimer interface (DIF). Yet, the importance of the DIF for the signalling potential of wild-type B-Raf (B-Raf(wt)) and its oncogenic counterparts remains unknown. Here, we show that the DIF plays a pivotal role for the activity of B-Raf(wt) and several of its gain-of-function (g-o-f) mutants. In contrast, the B-Raf(V600E), B-Raf(insT) and B-Raf(G469A) oncoproteins are remarkably resistant to mutations in the DIF. However, compared with B-Raf(wt), B-Raf(V600E) displays extended protomer contacts, increased homodimerisation and incorporation into larger protein complexes. In contrast, B-Raf(wt) and Raf-1(wt) mediated signalling triggered by oncogenic Ras as well as the paradoxical activation of Raf-1 by kinase-inactivated B-Raf require an intact DIF. Surprisingly, the B-Raf DIF is not required for dimerisation between Raf-1 and B-Raf, which was inactivated by the D594A mutation, sorafenib or PLX4720. This suggests that paradoxical MEK/ERK activation represents a two-step mechanism consisting of dimerisation and DIF-dependent transactivation. Our data further implicate the Raf DIF as a potential target against Ras-driven Raf-mediated (paradoxical) ERK activation.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号