首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   414篇
  免费   50篇
  2022年   5篇
  2021年   7篇
  2020年   4篇
  2019年   4篇
  2018年   7篇
  2017年   5篇
  2016年   3篇
  2015年   12篇
  2014年   13篇
  2013年   12篇
  2012年   16篇
  2011年   24篇
  2010年   18篇
  2009年   11篇
  2008年   28篇
  2007年   25篇
  2006年   22篇
  2005年   13篇
  2004年   9篇
  2003年   10篇
  2002年   16篇
  2001年   21篇
  2000年   18篇
  1999年   12篇
  1998年   7篇
  1996年   3篇
  1995年   3篇
  1994年   4篇
  1993年   5篇
  1992年   17篇
  1991年   8篇
  1990年   13篇
  1989年   10篇
  1988年   8篇
  1987年   5篇
  1985年   3篇
  1984年   8篇
  1983年   6篇
  1981年   2篇
  1980年   3篇
  1978年   2篇
  1976年   4篇
  1975年   2篇
  1974年   3篇
  1973年   2篇
  1971年   2篇
  1969年   3篇
  1968年   5篇
  1966年   5篇
  1959年   2篇
排序方式: 共有464条查询结果,搜索用时 31 毫秒
111.
The wheat germ eukaryotic translation initiation factor (eIF) 4F binds tightly to the mRNA internal ribosome entry site (IRES) of tobacco etch virus (TEV) to promote translation initiation. When eIF4F is limiting, TEV is preferentially translated compared with host cell mRNA. To gain insight into the dynamic process of protein synthesis initiation and the mechanism of binding, the kinetics of eIF4F binding to TEV IRES were examined. The association rate constant (kon) and dissociation rate constant (koff) for eIF4F binding to IRES were 59 ± 2.1 μm−1 s−1 and 12.9 ± 0.3 s−1, respectively, comparable with the rates for capped RNA. Binding of eIF4E or eIF4F to the cap of mRNA is the rate-limiting step for initiation of cap-dependent protein synthesis. The concentration dependence of the reactions suggested a simple one-step association mechanism. However, the association rate was reduced more than 10-fold when KCl concentration was increased from 50 to 300 mm, whereas the dissociation rate constant was increased 2-fold. The addition of eIF4B and poly(A)-binding protein enhanced the association rate of eIF4F ∼3-fold. These results suggest a mechanism where eIF4F initially binds electrostatically, followed by a conformational change to further stabilize binding. Poly(A)-binding protein and eIF4B mainly affect the eIF4F/TEV association rate. These results demonstrate the first direct kinetic measurements of translation initiation factor binding to an IRES.  相似文献   
112.
We studied the localization of diadinoxanthin cycle pigments in the diatoms Cyclotella meneghiniana and Phaeodactylum tricornutum. Isolation of pigment protein complexes revealed that the majority of high-light-synthesized diadinoxanthin and diatoxanthin is associated with the fucoxanthin chlorophyll protein (FCP) complexes. The characterization of intact cells, thylakoid membranes, and pigment protein complexes by absorption and low-temperature fluorescence spectroscopy showed that the FCPs contain certain amounts of protein-bound diadinoxanthin cycle pigments, which are not significantly different in high-light and low-light cultures. The largest part of high-light-formed diadinoxanthin cycle pigments, however, is not bound to antenna apoproteins but located in a lipid shield around the FCPs, which is copurified with the complexes. This lipid shield is primarily composed of the thylakoid membrane lipid monogalactosyldiacylglycerol. We also show that the photosystem I (PSI) fraction contains a tightly connected FCP complex that is enriched in protein-bound diadinoxanthin cycle pigments. The peripheral FCP and the FCP associated with PSI are composed of different apoproteins. Tandem mass spectrometry analysis revealed that the peripheral FCP is composed mainly of the light-harvesting complex protein Lhcf and also significant amounts of Lhcr. The PSI fraction, on the other hand, shows an enrichment of Lhcr proteins, which are thus responsible for the diadinoxanthin cycle pigment binding. The existence of lipid-dissolved and protein-bound diadinoxanthin cycle pigments in the peripheral antenna and in PSI is discussed with respect to different specific functions of the xanthophylls.  相似文献   
113.
Eukaryotic translation elongation factor 1A (eEF1A) is one of the most abundant protein synthesis factors. eEF1A is responsible for the delivery of all aminoacyl-tRNAs to the ribosome, aside from initiator and selenocysteine tRNAs. In addition to its roles in polypeptide chain elongation, unique cellular and viral activities have been attributed to eEF1A in eukaryotes from yeast to plants and mammals. From preliminary, speculative associations to well characterized biochemical and biological interactions, it is clear that eEF1A, of all the translation factors, has been ascribed the most functions outside of protein synthesis. A mechanistic understanding of these non-canonical functions of eEF1A will shed light on many important biological questions, including viral-host interaction, subcellular organization, and the integration of key cellular pathways.  相似文献   
114.
We have investigated the effects of poly(A)-tail on binding of eIF4F, eIF4B and PABP with tobacco etch virus (TEV) IRES RNA. The fluorescence anisotropy data showed that the addition of poly(A)20 increases the binding affinity of eIF4F·4B and eIF4F·PABP complexes to IRES RNA ~ 2- and 4-fold, respectively. However, the binding affinity of eIF4F with PK1 was enhanced ~ 11-fold with the addition of PABP, eIF4B, and poly(A)20 together. Whereas, poly(A)20 alone increases the binding affinity of eIF4F·4B·PABP with PK1 RNA about 3-fold, showing an additive effect rather than the large increase in affinity as shown for cap binding. Thermodynamic data showed that PK1 RNA binding to protein complexes in the presence of poly(A)20 was enthalpy-driven and entropy-favorable. Poly(A)20 decreased the entropic contribution 75% for binding of PK1 RNA to eIF4F·4B·PABP as compared to eIF4F alone, suggesting reduced hydrophobic interactions for complex formation and an overall conformational change. Overall, these results demonstrate the first direct effect of poly(A) on the equilibrium and thermodynamics of eIF4F and eIF4F·4B·PABP with IRES-RNA.  相似文献   
115.
Eukaryotic initiation factor 5A (eIF5A) is the only protein in nature that contains hypusine, an unusual amino acid derived from the modification of lysine by spermidine. Two genes, TIF51A and TIF51B, encode eIF5A in the yeast Saccharomyces cerevisiae. In an effort to understand the structure–function relationship of eIF5A, we have generated yeast mutants by introducing plasmid-borne tif51A into a double null strain where both TIF51A and TIF51B have been disrupted. One of the mutants, tsL102A strain (tif51A L102A tif51aΔ tif51bΔ) exhibits a strong temperature-sensitive growth phenotype. At the restrictive temperature, tsL102A strain also exhibits a cell shape change, a lack of volume change in response to temperature increase and becomes more sensitive to ethanol, a hallmark of defects in the PKC/WSC cell wall integrity pathway. In addition, a striking change in actin dynamics and a complete cell cycle arrest at G1 phase occur in tsL102A cells at restrictive temperature. The temperature-sensitivity of tsL102A strain is due to a rapid loss of mutant eIF5A with the half-life reduced from 6 h at permissive temperature to 20 min at restrictive temperature. Phenylmethyl sulfonylfluoride (PMSF), an irreversible inhibitor of serine protease, inhibited the degradation of mutant eIF5A and suppressed the temperature-sensitive growth arrest. Sorbitol, an osmotic stabilizer that complement defects in PKC/WSC pathways, stabilizes the mutant eIF5A and suppresses all the observed temperature-sensitive phenotypes.  相似文献   
116.
Nitric oxide (·NO) and nitrogen dioxide (·NO2) are hydrophobic gases. Therefore, lipid membranes and hydrophobic regions of proteins are potential sinks for these species. In these hydrophobic environments, reactive nitrogen species will exhibit different chemistry than in aqueous environments due to higher local concentrations and the lack of hydrolysis reactions. The peroxynitrite anion (ONOO-) and peroxynitrous acid (ONOOH) can freely pass through lipid membranes, making peroxynitrite-mediated reactions in a hydrophobic environment also of extreme relevance. The reactions observed by these reactive nitrogen species in a hydrophobic milieu include oxidation, nitration and even potent chain-breaking antioxidant reactions. The physiological and toxicological relevance of these reactions is discussed.  相似文献   
117.
Goss R 《Planta》2003,217(5):801-812
The substrate specificity of the enzyme violaxanthin de-epoxidase (VDE) of the primitive green alga Mantoniella squamata (Prasinophyceae) was tested in in vitro enzyme assays employing the following xanthophyll mono-epoxides: antheraxanthin (Ax), diadinoxanthin (Ddx), lutein-epoxide (LE), cryptoxanthin-epoxide (CxE), 9- cis neoxanthin (cNx), all- trans neoxanthin (Nx), and xanthophyll di-epoxides: 9- cis violaxanthin (cVx), all- trans violaxanthin (Vx), cryptoxanthin-di-epoxide (CxDE). The data presented in this study show that the VDE of M. squamata not only exhibits a low affinity for the mono-epoxide Ax, as has been reported by R. Frommolt et al. (2001, Planta 213:446-456), but has a reduced substrate affinity for the mono-epoxides Ddx, LE, CxE, and Nx as well. On the other hand, xanthophylls with a second epoxy-group (Vx, CxDE) can be de-epoxidized with a higher efficiency. Such a preference for xanthophyll di-epoxides cannot be observed for the higher-plant VDE, where, in general, no marked differences in the pigment de-epoxidation rates between xanthophyll mono- and di-epoxides are visible. Despite this substantial difference between the VDEs of M. squamata and S. oleracea there are also features common to both enzymes. Neither VDE is able to convert xanthophylls with a 9- cis configuration in the acyclic polyene chain and both rely on substrates in the all- trans configuration. Both enzymes furthermore exhibit a dependence of enzyme activity on the polarity of the substrate. Highly polar (Nx) or non-polar (CxE) xanthophylls are de-epoxidized with greatly reduced rates in comparison to substrates with an intermediate polarity (Vx, Ax, LE, Ddx). This dependence on substrate polarity becomes more obvious when the higher-plant VDE is examined, as the substrate affinity of the VDE of M. squamata is more strongly influenced by the existence or absence of a second epoxy-group. In summary, the data presented in this study underline the fact that different VDEs, although in general catalyzing the same reaction sequence, are functionally diverse.  相似文献   
118.
Estrogens and their metabolites have been implicated in both the initiation and the prevention of breast cancer. The reduction in breast cancer incidence seen in the tamoxifen arms of the four prospective trials to date has established the proof of principle that antagonizing estrogen is a potential means of reducing breast cancer risk. However, the areas to improve on these results include: (a) enhanced efficacy, (b) reduction in the incidence of receptor-negative tumors, (c) improved overall and endocrinological side effects, and (d) improved function on end-organs other than the breast. The aromatase inhibitors offer the potential to achieve these goals in part in the following ways: (a) greater reduction in risk of disease as evidenced by superior efficacy in advanced breast cancer and by inhibition of both initiation and promotion of breast cancer, (b) reduction in receptor-negative tumors by synergy with COX-2 inhibitors resulting in growth factor inhibition, anti-angiogenesis and inhibition of tumor-associated aromatase expression, (c) fewer vasomotor and urogenital abnormalities, and (d) reduced thromboembolism and cardiovascular complications and satisfactory effects on bone metabolism. Important differences may exist between non-steroidal reversible inhibitors and steroidal irreversible inactivators in particular related to the androgenic/anabolic effects of the steroidal inactivators. Pilot studies of aromatase inhibitors described elsewhere in this session have begun in healthy women with dense mammography, or a high-risk genetic and/or histocytopathologic profile, to determine potential efficacy, as well as effects on end-organ function. A number of phase three trials with aromatase inhibitors are also underway or in planning. Among these are the BRCA 1 and 2 study of exemestane versus placebo in unaffected postmenopausal carriers, the International Breast Intervention Study 2 (IBIS 2) of anastrozole versus placebo in women with a high-risk profile, and the National Cancer Institute of Canada’s Clinical Trial Group (NCIC CTG) study of exemestane with or without celecoxib versus placebo in women at risk of the disease. For premenopausal women, combination strategies of gonadotrophin agonists and aromatase inhibitors are being investigated. The potential of using low doses of aromatase inhibitors to lower “in breast” estrogen levels without unduly perturbing plasma concentrations is also being explored. The potential of the aromatase gene functioning as an oncogene within the breast may be tied to breast density which in turn may represent both a selection tool for elevated risk and an intermediate marker of prevention. The strong link between postmenopausal estrogen levels and breast cancer risk suggests the possibility that plasma estrogen levels may be a useful intermediate marker of prevention. The aromatase inhibitors offer us the first ever tool to render women virtually free of estrogen and are potentially an exciting tool for the prevention of breast cancer.  相似文献   
119.
The crystal structure of the N-terminal 219 residues (domain 1) of the conserved eukaryotic translation elongation factor 1Bgamma (eEF1Bgamma), encoded by the TEF3 gene in Saccharomyces cerevisiae, has been determined at 3.0 A resolution by the single wavelength anomalous dispersion technique. The structure is overall very similar to the glutathione S-transferase proteins and contains a pocket with architecture highly homologous to what is observed in glutathione S-transferase enzymes. The TEF3-encoded form of eEF1Bgamma has no obvious catalytic residue. However, the second form of eEF1Bgamma encoded by the TEF4 gene contains serine 11, which may act catalytically. Based on the x-ray structure and gel filtration studies, we suggest that the yeast eEF1 complex is organized as an [eEF1A.eEF1Balpha.eEF1Bgamma]2 complex. A 23-residue sequence in the middle of eEF1Bgamma is essential for the stable dimerization of eEF1Bgamma and the quaternary structure of the eEF1 complex.  相似文献   
120.
The translation elongation machinery in fungi differs from other eukaryotes in its dependence upon eukaryotic elongation factor 3 (eEF3). eEF3 is essential in vivo and required for each cycle of the translation elongation process in vitro. Models predict eEF3 affects the delivery of cognate aminoacyl-tRNA, a function performed by eEF1A, by removing deacylated tRNA from the ribosomal Exit site. To dissect eEF3 function and its link to the A-site activities of eEF1A, we have identified a temperature-sensitive allele of the YEF3 gene. The F650S substitution, located between the two ATP binding cassettes, reduces both ribosome-dependent and intrinsic ATPase activities. In vivo this mutation increases sensitivity to aminoglycosidic drugs, causes a 50% reduction of total protein synthesis at permissive temperatures, slows run-off of polyribosomes, and reduces binding to eEF1A. Reciprocally, excess eEF3 confers synthetic slow growth, increased drug sensitivity, and reduced translation in an allele specific fashion with an E122K mutation in the GTP binding domain of eEF1A. In addition, this mutant form of eEF1A shows reduced binding of eEF3. Thus, optimal in vivo interactions between eEF3 and eEF1A are critical for protein synthesis.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号