首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1038篇
  免费   124篇
  1162篇
  2022年   15篇
  2021年   27篇
  2019年   19篇
  2018年   18篇
  2017年   19篇
  2016年   26篇
  2015年   38篇
  2014年   41篇
  2013年   53篇
  2012年   63篇
  2011年   44篇
  2010年   35篇
  2009年   29篇
  2008年   38篇
  2007年   40篇
  2006年   44篇
  2005年   28篇
  2004年   34篇
  2003年   35篇
  2002年   36篇
  2001年   29篇
  2000年   38篇
  1999年   31篇
  1998年   10篇
  1997年   9篇
  1996年   10篇
  1995年   10篇
  1994年   11篇
  1993年   8篇
  1992年   15篇
  1991年   16篇
  1990年   26篇
  1989年   21篇
  1988年   13篇
  1987年   15篇
  1986年   12篇
  1985年   18篇
  1984年   13篇
  1983年   11篇
  1982年   12篇
  1981年   11篇
  1980年   19篇
  1979年   13篇
  1978年   7篇
  1977年   7篇
  1976年   9篇
  1975年   11篇
  1970年   7篇
  1967年   6篇
  1943年   6篇
排序方式: 共有1162条查询结果,搜索用时 15 毫秒
11.
Eleven bacterial and two yeast strains, four of which were previously identified as having activity on a lightly cross-linked carboxymethyl cellulose (CLD-2) found in one type of superabsorbent tampon, were grown on a variety of substrates, most containing cellulosics. None produced detectable amounts of cellulases, but all elaborated beta-glucosidase. None of these 13 strains nor 3 commercially obtained beta-glucosidase preparations could hydrolyze CLD-2, although a commercial cellulase and two other bacterial preparations known to produce cellulases could. Based on these results, it appears that previous work suggesting that the degradation of CLD-2 by vaginal microbes and beta-glucosidase is implicated in the production by Staphylococcus aureus of toxin causing toxic shock syndrome must be reevaluated.  相似文献   
12.
13.
A mathematical model for learning of a conditioned avoidance behavior is presented. An identification of the net excitation of a neural model (Rashevsky, N., 1960.Mathematical Biophysics. Vol. II. New York: Dover Publications, Inc.) with the instantaneous probability of response is introduced and its usefulness in discussing block-trial learning performances in the conditioned avoidance situation is outlined for normal and brain-operated animals, using experimental data collected by the author. Later, the model is applied to consecutive trial learning and connection is made with the approach of H. D. Landahl (1964. “An Avoidance Learning Situation. A Neural Net Model.”Bull. Math. Biophysics,26, 83–89; and 1965, “A Neural Net Model for Escape Learning.”Bull. Math. Biophysics,27, Special Edition, 317–328) wherein lie further data with which the model can be compared.  相似文献   
14.
15.
16.
Rapid advances in genetic testing have stimulated growing concern about the potential for misuse of genetic data by insurance companies, employers, and other third parties. Thus far, reports of genetically based discrimination in life insurance have been anecdotal. Reasoning that state insurance commissioners were likely to be aware of (1) the extent of current use of and interest in genetic tests by life insurers and (2) consumer complaints about insurance being denied because of genetic condition or because of genetic test results, we conducted a survey of that group. We received responses from 42 of the 51 jurisdictions. Our results suggest (1) that those who regulate the life insurance industry do not yet perceive genetic testing to pose a significant problem in how insurers rate applicants, (2) that life insurers have much legal latitude to require genetic tests, and (3) that so far few consumers have formally complained to commissioners about the use of genetic data by life insurers.  相似文献   
17.
The body composition of living gray seals (Halichoerus grypus) can be accurately predicted from a two-step model that involves measurement of total body water (TBW) by 2H or 3H dilution and application of predictive relationships between body components and TBW that were derived empirically by slaughter chemical analysis. TBW was overestimated by both 2HHO and 3HHO dilution; mean overestimates were 2.8 +/- 0.9% (SE) with 2H and 4.0 +/- 0.6% with 3H. The relationships for prediction of total body fat (TBF), protein (TBP), gross energy (TBGE), and ash (TBA) were as follows: %TBF = 105.1 - 1.47 (%TBW); %TBP = 0.42 (%TBW) - 4.75; TBGE (MJ) = 40.8 (mass in kg) - 48.5 (TBW in kg) - 0.4; and TBA (kg) = 0.1 - 0.008 (mass in kg) + 0.05 (TBW in kg). These relationships are applicable to gray seals of both sexes over a wide range of age and body conditions, and they predict the body composition of gray seals more accurately than the predictive equations derived from ringed seals (Pusa hispida) (Stirling et al., Can. J. Zool. 53: 1021-1027, 1975) and from the equation of Pace and Rathbun (J. Biol. Chem. 158: 685-691, 1945), which has been reported to be generally applicable to mammals.  相似文献   
18.
Poliovirus vectors are being studied as potential vaccine delivery systems, with foreign genetic sequences incorporated as part of the viral genome. The foreign sequences are expressed as part of the viral polyprotein. Addition of proteolytic cleavage sites at the junction of the foreign polypeptide and the viral proteins results in cleavage during polyprotein processing. The ability of foot-and-mouth disease virus (FMDV) 2A to mediate proteolytic cleavage in the context of poliovirus vectors was studied. The results demonstrate that FMDV 2A is able to generate cleavage of the foreign antigen from the viral polyprotein. A second cleavage event between the FMDV 2A peptide and the foreign protein was also observed.  相似文献   
19.
Summary A novel protocol for isotopically labeling bacterially expressed proteins is presented. This method circumvents problems related to poor cell growth, commonly associated with the use of minimal labeled media, and problems with protein induction encountered, less commonly, when using enriched labeled media. The method involves initially growing the bacterial cells to high optical density in a commercially available enriched labeled medium. Following a suitable growth period, the cells are transferred to a different (minimal) labeled medium, appropriate for induction. The method is demonstrated using the protein melanoma growth stimulating activity (MGSA).  相似文献   
20.
Abstract: The specific binding of [3H]WAY-100635 {N-[2-[4-(2-[O-methyl-3H]methoxyphenyl)-1-piperazinyl]ethyl]-N-(2-pyridinyl)cyclohexane carboxamide trihydrochloride} to rat hippocampal membrane preparations was time, temperature, and tissue concentration dependent. The rates of [3H]WAY-100635 association (k+1 = 0.069 ± 0.015 nM?1 min?1) and dissociation (k?1 = 0.023 ± 0.001 min?1) followed monoexponential kinetics. Saturation binding isotherms of [3H]WAY-100635 exhibited a single class of recognition site with an affinity of 0.37 ± 0.051 nM and a maximal binding capacity (Bmax) of 312 ± 12 fmol/mg of protein. The maximal number of binding sites labelled by [3H]WAY-100635 was ~36% higher compared with that of 8-hydroxy-2-(di-n-[3H]-propylamino)tetralin ([3H]8-OH-DPAT). The binding affinity of [3H]WAY-100635 was significantly lowered by the divalent cations CaCl2 (2.5-fold; p < 0.02) and MnCl2 (3.6-fold; p < 0.05), with no effect on Bmax. Guanyl nucleotides failed to influence the KD and Bmax parameters of [3H]WAY-100635 binding to 5-HT1A receptors. The pharmacological binding profile of [3H]WAY-100635 was closely correlated with that of [3H]8-OH-DPAT, which is consistent with the labelling of 5-hydroxytryptamine1A (5-HT1A) sites in rat hippocampus. [3H]WAY-100635 competition curves with 5-HT1A agonists and partial agonists were best resolved into high- and low-affinity binding components, whereas antagonists were best described by a one-site binding model. In the presence of 50 µM guanosine 5′-O-(3-thiotriphosphate) (GTPγS), competition curves for the antagonists remained unaltered, whereas the agonist and partial agonist curves were shifted to the right, reflecting an influence of G protein coupling on agonist versus antagonist binding to the 5-HT1A receptor. However, a residual (16 ± 2%) high-affinity agonist binding component was still apparent in the presence of GTPγS, indicating the existence of GTP-insensitive sites.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号