首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1616篇
  免费   103篇
  2021年   13篇
  2020年   10篇
  2019年   11篇
  2018年   22篇
  2017年   11篇
  2016年   25篇
  2015年   40篇
  2014年   58篇
  2013年   100篇
  2012年   92篇
  2011年   91篇
  2010年   57篇
  2009年   50篇
  2008年   76篇
  2007年   118篇
  2006年   98篇
  2005年   110篇
  2004年   132篇
  2003年   103篇
  2002年   87篇
  2001年   25篇
  2000年   26篇
  1999年   23篇
  1998年   22篇
  1997年   16篇
  1996年   17篇
  1995年   15篇
  1994年   17篇
  1993年   8篇
  1992年   17篇
  1991年   17篇
  1990年   23篇
  1989年   11篇
  1988年   12篇
  1987年   19篇
  1986年   11篇
  1985年   7篇
  1984年   6篇
  1983年   9篇
  1982年   14篇
  1981年   20篇
  1980年   14篇
  1979年   11篇
  1978年   4篇
  1977年   5篇
  1975年   6篇
  1974年   6篇
  1973年   8篇
  1972年   6篇
  1969年   4篇
排序方式: 共有1719条查询结果,搜索用时 283 毫秒
91.
We have been conducting a mouse cDNA project to predict protein-coding sequences of mouse KIAA-homologous genes since 2001. As an extension of this project, we also started to accumulate mouse cDNA clones homologous to the human FLJ cDNA clones which are another long cDNA resource produced in our institute. We have isolated the cDNA clones from size-fractionated cDNA libraries derived from five different mouse tissues and natural killer T-cells. Although the human FLJ cDNA clones were originally derived from human spleen libraries, one-third of their mouse homologues were obtained from the brain library. We designated these homologues "mFLJ" plus a 5-digit number and herein characterized 110 mFLJ cDNA clones. We assigned an integrity of the CDSs from the comparison of the 110 cDNA clones with the corresponding human FLJ cDNA clones. The average size of the 110 mouse cDNA sequences was 3.8 kb and that of the deduced amino acid sequences from their longest CDS in each cDNA was 663 amino acid residues. Homology and/or motif search against public databases revealed new domains and/or motifs in 26 mFLJ gene products which provide additional speculation regarding the function of FLJ genes.  相似文献   
92.
The cps5-138 fission yeast mutant shows an abnormal lemon-like morphology at 28 degrees C in minimal medium and a lethal thermosensitive phenotype at 37 degrees C. Cell growth is completely inhibited at 28 degrees C in a Ca2+-free medium, in which the wild type is capable of growing normally. Under these conditions, actin patches become randomly distributed throughout the cell, and defects in septum formation and subsequent cytokinesis appear. The mutant cell is hypersensitive to the cell wall-digesting enzymatic complex Novozym234 even under permissive conditions. The gene SPBC31E1.02c, which complements all the mutant phenotypes described above, was cloned and codes for the Ca2+-ATPase homologue Pmr1p. The gene is not essential under optimal growth conditions but is required under conditions of low Ca2+ (<0.1 mM) or high temperature (>35 degrees C). The green fluorescent protein-tagged Cps5 proteins, which are expressed under physiological conditions (an integrated single copy with its own promoter in the cps5Delta strain), display a localization pattern typical of endoplasmic reticulum proteins. Biochemical analyses show that 1,3-beta-D-glucan synthase activity in the mutant is decreased to nearly half that of the wild type and that the mutant cell wall contains no detectable galactomannan when the cells are exposed to a Ca2+-free medium. The mutant acid phosphatase has an increased electrophoretic mobility, suggesting that incomplete protein glycosylation takes place in the mutant cells. These results indicate that S. pombe Pmr1p is essential for the maintenance of cell wall integrity and cytokinesis, possibly by allowing protein glycosylation and the polarized actin distribution to take place normally. Disruption and complementation analyses suggest that Pmr1p shares its function with a vacuolar Ca2+-ATPase homologue, Pmc1p (SPAPB2B4.04c), to prevent lethal activation of calcineurin for cell growth.  相似文献   
93.
The ability to restrict gene expression or disruption to specific regions of the brain would enhance understanding of the molecular basis for brain development and function. For this purpose, brain region-restricted promoters are essential. Here we report the isolation of a DNA fragment containing the Emx1 gene promoter, which is responsible for dorsal telencephalon-specific expression. The Cre recombinase gene was inserted into a mouse PAC (P1-derived artificial chromosome) Emx1-locus clone (PAC-Emx1#1 clone) and utilized to generate three transgenic mouse lines. In all three lines, especially Tg3, Cre-mediated recombination was highly restricted to Emx1-expressing cell lineages, from embryonic stages to adulthood. Immunohistochemical analyses showed that Cre protein is expressed in the dorsal telencephalon in all three lines in adulthood. Thus, the PAC-Emx1#1 clone contains essentially all regulatory elements necessary for Emx1 gene expression. Our results suggest that Emx1-Cre Tg3 mice and the PAC-Emx1#1 clone constitute powerful tools for dorsal telencephalon-specific gene manipulation.  相似文献   
94.
Cell polarization and migration in response to chemokines is essential for proper development of the immune system and activation of immune responses. Recent studies of chemokine signaling have revealed a critical role for PI3-Kinase, which is required for polarized membrane association of pleckstrin homology (PH) domain-containing proteins and activation of Rho family GTPases that are essential for cell polarization and actin reorganization. Additional data argue that tyrosine kinases are also important for chemokine-induced Rac activation. However, how and which kinases participate in these pathways remain unclear. We demonstrate here that the Tec kinases Itk and Rlk play an important role in chemokine signaling in T lymphocytes. Chemokine stimulation induced transient membrane association of Itk and phosphorylation of both Itk and Rlk, and purified T cells from Rlk(-/-)Itk(-/-) mice exhibited defective migration to multiple chemokines in vitro and decreased homing to lymph nodes upon transfer to wt mice. Expression of a dominant-negative Itk impaired SDF-1alpha-induced migration, cell polarization, and activation of Rac and Cdc42. Thus, Tec kinases are critical components of signaling pathways required for actin polarization downstream from both antigen and chemokine receptors in T cells.  相似文献   
95.
Composition and structure of the centromeric region of rice chromosome 8   总被引:23,自引:0,他引:23  
Understanding the organization of eukaryotic centromeres has both fundamental and applied importance because of their roles in chromosome segregation, karyotypic stability, and artificial chromosome-based cloning and expression vectors. Using clone-by-clone sequencing methodology, we obtained the complete genomic sequence of the centromeric region of rice (Oryza sativa) chromosome 8. Analysis of 1.97 Mb of contiguous nucleotide sequence revealed three large clusters of CentO satellite repeats (68.5 kb of 155-bp repeats) and >220 transposable element (TE)-related sequences; together, these account for approximately 60% of this centromeric region. The 155-bp repeats were tandemly arrayed head to tail within the clusters, which had different orientations and were interrupted by TE-related sequences. The individual 155-bp CentO satellite repeats showed frequent transitions and transversions at eight nucleotide positions. The 40 TE elements with highly conserved sequences were mostly gypsy-type retrotransposons. Furthermore, 48 genes, showing high BLAST homology to known proteins or to rice full-length cDNAs, were predicted within the region; some were close to the CentO clusters. We then performed a genome-wide survey of the sequences and organization of CentO and RIRE7 families. Our study provides the complete sequence of a centromeric region from either plants or animals and likely will provide insight into the evolutionary and functional analysis of plant centromeres.  相似文献   
96.
A cDNA encoding a secretory protein hitherto unknown was cloned from mouse adrenocortical cells by subtractive hybridization between the cells without and with expressing steroid 11beta-hydroxylase (Cyp11b-1), a marker for the functional differentiation of cells in the zonae fasciculata reticularis (zFR). The deduced protein consisting of 466 amino acids contained a secretory signal, epidermal growth factor-like repeats, and a proteolytically inactive cathepsin B-related sequence. The amino acid sequence was 89% identical with that of human tubulointerstitial nephritis antigen-related protein. Among the mouse organs examined, adrenal glands prominently expressed its mRNA. The mRNA and its encoded protein were detected in the outer adrenocortical zones that do not express Cyp11b-1, i.e. the zona glomerulosa and the undifferentiated cell zone, while being undetectable in zFR that express Cyp11b-1. The new protein was designated as adrenocortical zonation factor 1 (AZ-1). Clonal lines with different levels of AZ-1 expression were established from Y-1 adrenocortical cells that originally express Cyp11b-1 but little AZ-1. Analyses of the clonal lines revealed that Cyp11b-1 is detected in the clonal lines maintaining little AZ-1 expression and becomes undetectable in those expressing AZ-1. On the other hand, irrespective of the AZ-1 expression, all clones expressed cholesterol side-chain cleavage enzyme, which occurs throughout the cortical zones. These results demonstrated that adrenocortical cells expressing AZ-1 do not express Cyp11b-1, whereas those with little AZ-1 express this zFR marker in vitro and in vivo, implying a putative role of AZ-1 in determining the zonal differentiation of adrenocortical cells.  相似文献   
97.
Voltage-gated calcium channels couple changes in membrane potential to neuronal functions regulated by calcium, including neurotransmitter release. Here we report that presynaptic N-type calcium channels not only control neurotransmitter release but also regulate synaptic growth at Drosophila neuromuscular junctions. In a screen for behavioral mutants that disrupt synaptic transmission, an allele of the N-type calcium channel locus (Dmca1A) was identified that caused synaptic undergrowth. The underlying molecular defect was identified as a neutralization of a charged residue in the third S4 voltage sensor. RNA interference reduction of N-type calcium channel expression also reduced synaptic growth. Hypomorphic mutations in syntaxin-1A or n-synaptobrevin, which also disrupt neurotransmitter release, did not affect synapse proliferation at the neuromuscular junction, suggesting calcium entry through presynaptic N-type calcium channels, not neurotransmitter release per se, is important for synaptic growth. The reduced synapse proliferation in Dmca1A mutants is not due to increased synapse retraction but instead reflects a role for calcium influx in synaptic growth mechanisms. These results suggest N-type channels participate in synaptic growth through signaling pathways that are distinct from those that mediate neurotransmitter release. Linking presynaptic voltage-gated calcium entry to downstream calcium-sensitive synaptic growth regulators provides an efficient activity-dependent mechanism for modifying synaptic strength.  相似文献   
98.
99.
The cell adhesion molecule L1 (L1-CAM) plays critical roles in neurite growth. Its cytoplasmic domain (L1CD) binds to ankyrins that associate with the spectrin-actin network. This paper demonstrates that L1-CAM interactions with ankyrinB (but not with ankyrinG) are involved in the initial formation of neurites. In the membranous protrusions surrounding the soma before neuritogenesis, filamentous actin (F-actin) and ankyrinB continuously move toward the soma (retrograde flow). Bead-tracking experiments show that ankyrinB mediates L1-CAM coupling with retrograde F-actin flow in these perisomatic structures. Ligation of the L1-CAM ectodomain by an immobile substrate induces L1CD-ankyrinB binding and the formation of stationary ankyrinB clusters. Neurite initiation preferentially occurs at the site of these clusters. In contrast, ankyrinB is involved neither in L1-CAM coupling with F-actin flow in growth cones nor in L1-based neurite elongation. Our results indicate that ankyrinB promotes neurite initiation by acting as a component of the clutch module that transmits traction force generated by F-actin flow to the extracellular substrate via L1-CAM.  相似文献   
100.
In this study, the metabolic activation of 2-nitrofluorene (NF) to estrogenic compounds was examined. NF was negative in estrogen reporter assays using estrogen-responsive yeast and human breast cancer cell line MCF-7. However, the compound exhibited estrogenic activity after incubation with liver microsomes of 3-methylcholanthrene-treated rats in the presence of NADPH. Minor estrogenic activity was observed when liver microsomes of untreated or phenobarbital-treated rats were used instead of those from 3-methylcholanthrene-treated rats. When the compound was incubated with the liver microsomes of 3-methylcholanthrene-treated rats in the presence of NADPH, 7-hydroxy-2-nitrofluorene (7-OH-NF) was formed as a major metabolite. However, little of the metabolite was formed by liver microsomes of untreated or phenobarbital-treated rats. Rat recombinant cytochrome P450 1A1 exhibited a significant oxidase activity toward NF, affording 7-OH-NF. Liver microsomes of phenobarbital-treated rats also enhanced oxidase activity toward NF. In this case, 9-hydroxy-2-nitrofluorene was formed. 7-OH-NF exhibited a significant estrogenic activity, while the activity of 9-hydroxy-2-nitrofluorene was much lower. These results suggest that the estrogenic activity of NF was due to formation of the 7-hydroxylated metabolite by liver microsomes.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号