首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1616篇
  免费   103篇
  2021年   13篇
  2020年   10篇
  2019年   11篇
  2018年   22篇
  2017年   11篇
  2016年   25篇
  2015年   40篇
  2014年   58篇
  2013年   100篇
  2012年   92篇
  2011年   91篇
  2010年   57篇
  2009年   50篇
  2008年   76篇
  2007年   118篇
  2006年   98篇
  2005年   110篇
  2004年   132篇
  2003年   103篇
  2002年   87篇
  2001年   25篇
  2000年   26篇
  1999年   23篇
  1998年   22篇
  1997年   16篇
  1996年   17篇
  1995年   15篇
  1994年   17篇
  1993年   8篇
  1992年   17篇
  1991年   17篇
  1990年   23篇
  1989年   11篇
  1988年   12篇
  1987年   19篇
  1986年   11篇
  1985年   7篇
  1984年   6篇
  1983年   9篇
  1982年   14篇
  1981年   20篇
  1980年   14篇
  1979年   11篇
  1978年   4篇
  1977年   5篇
  1975年   6篇
  1974年   6篇
  1973年   8篇
  1972年   6篇
  1969年   4篇
排序方式: 共有1719条查询结果,搜索用时 300 毫秒
101.
Triphenyltin (TPT) is an environmental endocrine disruptor and toxic substance, but little information is available on its immunological effects. To assess the effect of TPT on leukocyte differentiation, we investigated its effect on the neutrophilic differentiation of HL-60 cells induced by dimethyl sulfoxide and granulocyte colony-stimulating factor (G-CSF) for 6 days. At a low concentration, 10(-7)M, TPT increased superoxide production by differentiated HL-60 cells stimulated with opsonized zymosan (OZ) by about 45% and increased expression of CD18, a component of the OZ-receptor, by about 90%. Real-time PCR analysis revealed that TPT augmented the expression not only of CD18 but also of components of superoxide-generating NADPH-oxidase, p47phox, 2.7-fold, and p67phox, 2.0-fold, and of granulocyte colony-stimulating factor receptor (G-CSFR), 3.0-fold, whereas various other endocrine disruptors, including parathion, vinclozolin, and bisphenol A, had no such enhancing effects. The results of a DNA macroarray analysis showed that TPT enhanced the expression of G-CSFR and certain other neutrophil functional proteins, including CD14 and myeloid leukemia cell differentiation protein (MCL-1), and that TPT induced a decrease in expression of LC-PTP, leukocyte protein-tyrosine phosphatase, to about half the control level. The TPT-dependent suppression of LC-PTP was confirmed by real-time PCR analysis, and the results of immunoblotting indicated that TPT enhances the expression of myeloid specific tyrosine kinase hck by about 30% at the protein level, and this together with the reduction of LC-PTP may enhance tyrosine phosphorylation, in turn resulting in enhancement of superoxide production. These findings suggest that TPT may have an enhancing effect on the neutrophilic maturation of leukocytes.  相似文献   
102.
During the ATP hydrolysis cycle of the Dictyostelium myosin II motor domain, two conserved alpha-helices, the SH1/SH2 helix and the relay helix, rotate in a coordinated way to induce the swing motion of the converter domain. A network of hydrophobic and ionic interactions in these two helices and the converter may ensure that the motions of these helices are effectively transmitted to the converter. To examine the roles of these interactions in the ATPase-dependent converter swing, we disrupted two conserved hydrophobic linkages among them by means of a point mutation (I499A or F692A). The resulting mutations induced only limited changes in the kinetic parameters of ATP hydrolysis, except for a marked increase of basal MgATPase activity. However, the mutant myosins completely lost their in vitro and in vivo motor functions. Measurements of the intrinsic tryptophan fluorescence and the GFP-based FRET revealed that the converter domain of these mutants did not swing during steady-state ATP hydrolysis or in the presence of tightly trapped Mg.ADP.V(i), which shows that the point mutations induced the uncoupling of the converter swing and ATP hydrolysis cycle. These results highlight the importance of these hydrophobic linkages for transmitting the coordinated twist motions of the helices to the converter as well as the requirement of this converter swing for force generation.  相似文献   
103.
The alpha-chain of Fc epsilon RI (Fc epsilon RIalpha) plays a critical role in the binding of IgE to Fc epsilon RI. A fully human antibody interfering with this interaction may be useful for the prevention of IgE-mediated allergic diseases. Here, we describe the successful isolation of a human single-chain Fv antibody specific to human Fc epsilon RIalpha using human antibody phage display libraries. Using the non-immune phage antibody libraries constructed from peripheral blood lymphocyte cDNA from 20 healthy subjects, we isolated three phage clones (designated as FcR epsilon 27, FcR epsilon 51, and FcR epsilon 70) through two rounds of biopanning selection. The purified soluble scFv, FcR epsilon 51, inhibited the binding of IgE to recombinant Fc epsilon RIalpha, although both FcR epsilon 27 and FcR epsilon 70 showed fine binding specificity to Fc epsilon RIalpha. Since FcR epsilon 51 was determined to be a monomer by HPLC, BIAcore analysis was performed. The dissociation constant of FcR epsilon 51 to Fc epsilon RIalpha was estimated to be 20 nM, i.e., fortyfold lower than that of IgE binding to Fc epsilon RIalpha (K(d) = 0.5 nM). With these characteristics, FcR epsilon 51 exhibited inhibitory activity on the release of histamine from passively sensitized human peripheral blood mononuclear cells.  相似文献   
104.
105.
Detailed knowledge of neuronal connectivity patterns is indispensable for studies of various aspects of brain functions. We previously established a genetic strategy for visualization of multisynaptic neural pathways by expressing wheat germ agglutinin (WGA) transgene under the control of neuron type-specific promoter elements in transgenic mice and Drosophila. In this paper, we have developed a WGA-expressing recombinant adenoviral vector system and applied it for analysis of the olfactory system. When the WGA-expressing adenovirus was infused into a mouse nostril, various types of cells throughout the olfactory epithelium were infected and expressed WGA protein robustly. WGA transgene products in the olfactory sensory neurons were anterogradely transported along their axons to the olfactory bulb and transsynaptically transferred in glomeruli to dendrites of the second-order neurons, mitral and tufted cells. WGA protein was further conveyed via the lateral olfactory tract to the olfactory cortical areas including the anterior olfactory nucleus, olfactory tubercle, piriform cortex and lateral entorhinal cortex. In addition, transsynaptic retrograde labeling was observed in cholinergic neurons in the horizontal limb of diagonal band, serotonergic neurons in the median raphe nucleus, and noradrenergic neurons in the locus coeruleus, all of which project centrifugal fibers to the olfactory bulb. Thus, the WGA-expressing adenovirus is a useful and powerful tool for tracing neural pathways and could be used in animals that are not amenable to the transgenic technology.  相似文献   
106.
Phagocytes play a central role in the host defense system, and the relationship between the mechanism of their activation and cytoskeletal reorganization has been studied. We have previously reported a possible involvement of cofilin, an actin-binding protein, in phagocyte functions through its phosphorylation/dephosphorylation and translocation to the plasma membrane regions. In this work, we have obtained a new line of evidence showing an important role of cofilin in phagocyte functions using the mouse macrophage cell line J774.1 and an antisense oligonucleotide to cofilin. Upon stimulation with opsonized zymosan (OZ), cofilin was phosphorylated, and it accumulated around phagocytic vesicles. As the antisense oligonucleotide to cofilin, a 20-mer S-oligo corresponding to the sequence including the AUG translational initiation site was found to be effective. In the cells treated with the antisense oligonucleotide, the amount of cofilin was less than 30% of that in the control cells, and the level of F-actin was two or three times higher than that in the control cells before and throughout the cell activation. In the antisense oligonucleotide-treated cells, OZ-triggered superoxide production was three times faster than that in the control cells. Furthermore, phagocytosis of OZ was enhanced by the antisense. These results show that cofilin plays an essential role in the control of phagocyte function through regulation of actin filament dynamics.  相似文献   
107.
The importance of tumor necrosis factor (TNF)-alpha and the TNF receptor gene polymorphisms in the etipathogenesis of inflammatory bowel disease (IBD) has not been elucidated. DNA from peripheral blood samples was obtained from 124 patients with Crohn's disease (CD), 106 patients with ulcerative colitis (UC), and 111 unrelated healthy controls. We examined two single nucleotide polymorphisms (SNPs) of the TNF-alpha gene, TNF (-308 G/A and -238 G/A), an SNP of the TNF receptor superfamily member 1A gene, TNFRSF1A(also known as TNFR1), at codon 12 in exon 1 (CCA/CCG), and two SNPs of the 1B gene, TNFRSF1B (also known as TNFR2), (1466 A/G and 1493 C/T). There was a difference in the carrier frequency for haplotype AG (-308 A, -238 G) between UC patients and the controls (OR=4.76, 95% CI=1.53-14.74, P<0.01). We found a significant difference in carrier frequency for haplotype AT (1466 A, 1493 T) of the TNFRSF1B gene between CD patients and the controls (OR=2.13, 95% CI=1.08-4.21, P<0.05). The significance proved to be greater in CD patients with both internal and external fistula (OR=4.8, 95% CI=1.73-13.33, P<0.01), and in those who were poor responders ( n=22) to our treatments, which consisted of nutritional therapy, medical therapy and surgical therapy (OR=9.24, 95% CI=3.37-25.36, P<0.001). This study suggests that one of the genes responsible for UC may be the TNF gene, or an adjacent gene, and that TNFRSF1B gene polymorphisms contribute greatly to the increased onset risk of CD and to the disease behavior.  相似文献   
108.
Mutations in the superoxide dismutase 1 (SOD1) gene cause the degeneration of motor neurons in familial amyotrophic lateral sclerosis (FALS). An apoptotic process including caspase-1 and -3 has been shown to participate in the pathogenesis of FALS transgenic (Tg) mouse model. Here we report that IAP proteins, potent inhibitors of apoptosis, are involved in the FALS Tg mouse pathologic process. The levels of X-linked inhibitor of apoptosis protein (XIAP) mRNA and protein were significantly decreased in the spinal cord of symptomatic G93A-SOD1 Tg mice compared with littermates. In contrast, the levels of cIAP-1 mRNA and protein were increased in symptomatic G93A-SOD1 Tg mice, whereas the levels of cIAP-2 mRNA and protein were unchanged. In situ hybridization showed that the expression of XIAP was remarkably reduced in the motor neurons of Tg mice, and the expression of cIAP-1 was strongly increased in the reactive astrocytes of Tg mice. Overexpression of XIAP markedly inhibited the cell death and caspase-3 activity in the neuro2a cells expressing mutant SOD1. Deletional mutant analysis revealed that the N-terminal domain of XIAP, the BIR1-2 domains, was essential for this inhibitory activity. These results suggest that XIAP plays a role in the apoptotic mechanism in the progression of disease in mutant SOD1 Tg mice and holds therapeutic possibilities for FALS.  相似文献   
109.
Two blazeispirane derivatives including blazeispirols G and I were isolated from the cultured mycelia of the fungus Agaricus blazei Murill and were established to be (20S, 22S, 23R, 24S)-14 beta,22: 22,25-diepoxy-5-methoxy-des-A-ergosta-5,7,9-triene-11 alpha,23-diol and (20S, 22S, 23R, 24S)-14 beta,22:22,25-diepoxy-5-methoxy-des-A-ergosta-5,7,9,11-tetraene-23,28-diol by comparison of extensive 1D and 2D NMR spectral data with that of blazeispirol A. Furthermore, four blazeispirol derivatives blazeispirols, U, V, V(1) and Z(1) were isolated form the same source described above. Their structures were determined to be (20S, 22S, 23R, 24S)-14 beta,22:22,25-diepoxy-23-hydroxyergosta-4,6,8,11-tetraen-3-one, (20S, 22S, 23R, 24S)-14 beta,22:22,25-diepoxy-6 alpha,7 alpha,23-trihydroxyergosta-4,8,11-trien-3-one, (20S, 22S, 23R, 24S)-14 beta,22:22,25-diepoxy-6 beta,7 alpha,23-trihydroxyergosta-4,8,11-trien-3-one and (20S, 22S, 23R, 24S)-14 beta,22:22,25-diepoxy-23-hydroxy-4,5-seco-ergosta-6,8-diene-3,5-dione by extensive 1 D and 2D NMR spectral data.  相似文献   
110.
Cysteinyl residues in proteins were alkylated with acrylamide during sodium dodecyl sulphate-polyacrylamide gel electrophoresis (SDS-PAGE) to yield a thioether derivative, cys-S-beta-propionamide (PAM cys). The process was termed in situ alkylation with acrylamide. Using this method, the recovery of PAM-cys peptides from bovine serum albumin (BSA) was 88.6% at 10 picomol in one-dimensional (1-D) SDS-PAGE and 97.1% at 50 picomol in two-dimensional (2-D) SDS-PAGE. The coverage of tryptic peptide of BSA in 1-D and 2-D SDS-PAGE was 83.7% and 81.1%, respectively. The advantages of in situ alkylation with acrylamide were the following: (i) cysteinyl peptides were effectively derived in a single PAM cys and then proteins were precisely identified using databases; (ii) marked reduction of salts compared with post alkylation, e.g., using carboxymethylamide (CAM), resulting in higher signal intensity and wider coverage of cysteinyl peptides from PAM cys, compared with those of CAM derivatives, in mass spectrometry peptide mapping; and (iii) shorter duration by excluding the processes of post alkylation and desalting before peptide mapping.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号