首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1130篇
  免费   70篇
  1200篇
  2022年   2篇
  2021年   11篇
  2020年   9篇
  2019年   5篇
  2018年   14篇
  2017年   6篇
  2016年   15篇
  2015年   27篇
  2014年   45篇
  2013年   64篇
  2012年   68篇
  2011年   73篇
  2010年   46篇
  2009年   44篇
  2008年   63篇
  2007年   95篇
  2006年   74篇
  2005年   82篇
  2004年   107篇
  2003年   73篇
  2002年   62篇
  2001年   6篇
  2000年   4篇
  1999年   8篇
  1998年   18篇
  1997年   14篇
  1996年   12篇
  1995年   13篇
  1994年   10篇
  1993年   7篇
  1992年   6篇
  1991年   5篇
  1990年   9篇
  1989年   2篇
  1988年   4篇
  1987年   9篇
  1986年   6篇
  1985年   3篇
  1984年   4篇
  1983年   7篇
  1982年   12篇
  1981年   12篇
  1980年   10篇
  1979年   7篇
  1978年   3篇
  1977年   4篇
  1975年   4篇
  1974年   3篇
  1973年   5篇
  1972年   3篇
排序方式: 共有1200条查询结果,搜索用时 0 毫秒
91.
The main isozyme patterns of desialylated blood plasma or serum -l-fucosidase (FUCA) were found to be almost identical to those of semen, urine, placental extracts, and leukocyte lysates, when detected by polyacrylamide gel isoelectric focusing, and activity staining using the fluorogenic substrate 4-methylumbelliferyl--l-fucopyranoside. Three phenotypes (1, 2-1, and 2) determined from plasma samples were identical to the phenotypes from urine and leukocyte lysates from the same individuals. A population study of plasma samples collected from 485 Japanese individuals indicated that the frequencies of the FUCA11 * and FUCA12 * alleles were 0.7505 and 0.2495, respectively. The mean plasma enzyme activities (+SD) of the three phenotypes were 318.8 ± 116.7 nmol/ml per h for type 1, 268.0 ± 108.3 nmol/ml per h for type 2-1, and 233.2 ± 84.4 nmol/ml per h for type 2. The mean activities of types 1 and 2 suggest that, on average, the FUCA11 * gene product in plasma has about 1.4 times the activity of FUCA12 *.  相似文献   
92.
93.
Autophagy is a bulk protein degradation system for the entire organelles and cytoplasmic proteins. Previously, we have shown the liver dysfunction by autophagy deficiency. To examine the pathological effect of autophagy deficiency, we examined protein composition and their levels in autophagy-deficient liver by the proteomic analysis. While impaired autophagy led to an increase in total protein mass, the protein composition was largely unchanged, consistent with non-selective proteins/organelles degradation of autophagy. However, a series of oxidative stress-inducible proteins, including glutathione S-transferase families, protein disulfide isomerase and glucose-regulated proteins were specifically increased in autophagy-deficient liver, probably due to enhanced gene expression, which is induced by accumulation of Nrf2 in the nuclei of mutant hepatocytes. Our results suggest that autophagy deficiency causes oxidative stress, and such stress might be the main cause of liver injury in autophagy-deficient liver.  相似文献   
94.
Kon T  Nishiura M  Ohkura R  Toyoshima YY  Sutoh K 《Biochemistry》2004,43(35):11266-11274
Cytoplasmic dynein is a microtubule-based motor protein that is responsible for most intracellular retrograde transports along microtubule filaments. The motor domain of dynein contains six tandemly linked AAA (ATPases associated with diverse cellular activities) modules, with the first four containing predicted nucleotide-binding/hydrolysis sites (P1-P4). To dissect the functions of these multiple nucleotide-binding/hydrolysis sites, we expressed and purified Dictyostelium dynein motor domains in which mutations were introduced to block nucleotide binding at each of the four AAA modules, and then examined their detailed biochemical properties. The P1 mutant was trapped in a strong-binding state even in the presence of ATP and lost its motile activity. The P3 mutant also showed a high affinity for microtubules in the presence of ATP and lost most of the microtubule-activated ATPase activity, but retained microtubule sliding activity, although the sliding velocity of the mutant was more than 20-fold slower than that of the wild type. In contrast, mutation in the P2 or P4 site did not affect the apparent binding affinity of the mutant for microtubules in the presence of ATP, but reduced ATPase and microtubule sliding activities. These results indicate that ATP binding and its hydrolysis only at the P1 site are essential for the motor activities of cytoplasmic dynein, and suggest that the other nucleotide-binding/hydrolysis sites regulate the motor activities. Among them, nucleotide binding at the P3 site is not essential but is critical for microtubule-activated ATPase and motile activities of cytoplasmic dynein.  相似文献   
95.
96.
A carbohydrate ligand system has been developed which is composed of self-assembled monolayers (SAMs) of mannosylerythritol lipid-A (MEL-A) from Pseudozyma antarctica, serving for human immunoglobulin G and M (HIgG and HIgM). The estimated binding constants from surface plasmon resonance (SPR) measurement were K a = 9.4 × 106 M−1 for HIgG and 5.4 × 106 M−1 for HIgM, respectively. The binding site was not in the Fc region of immunoglobulin but in the Fab region. Large amounts of HIgG and HIgM bound to MEL-A SAMs were directly observed by atomic force microscopy.  相似文献   
97.
TLRs detect several classes of virus-associated molecules, such as ssRNA, CpG-DNA and dsRNA, and transduce signals leading to the production of IFN. Recently discovered cytoplasmic RNA helicases, RIG-I and MDA5, selectively sense viral RNA species. Gene disruption studies revealed the critical but non-redundant function of RIG-I and MDA5 in host antiviral responses.  相似文献   
98.
99.
The structure of asparagine-linked oligosaccharides attached to the antibody constant region (Fc) of human immunoglobulin G1 (IgG1) has been shown to affect the pharmacokinetics and antibody effector functions of antibody-dependent cellular cytotoxicity (ADCC) and complement-dependent cytotoxicity (CDC). However, it is still unclear how differences in the N-linked oligosaccharide structures impact the biological activities of antibodies, especially those lacking core fucose. Here, we succeeded in generating core fucose-lacking human IgG1 antibodies with three different N-linked Fc oligosaccharides, namely, a high-mannose, hybrid, and complex type, using the same producing clone, and compared their activities. Cultivation of an alpha-1,6-fucosyltransferase (FUT8) knockout Chinese hamster ovary cell line in the presence or absence of a glycosidase inhibitor (either swainsonine or kifunensine) yielded antibody production of each of the three types without contamination by the others. Two of three types of nonnaturally occurring atypical oligosaccharide IgG1, except the complex type, reduced the affinity for both human lymphocyte receptor IIIa (FcgammaRIIIa) and the C1q component of the complement, resulting in reduction of ADCC and CDC. The bulky structure of the nonreducing end of N-linked Fc oligosaccharides is considered to contribute the CDC change, whereas the structural change in the reducing end, i.e. the removal of core fucose, causes ADCC enhancement through improved FcgammaRIIIa binding. In the pharmacokinetic profile, although no significant difference of human neonatal Fc receptor (FcRn)-binding affinity was observed among the three types, the complex type showed longer serum half-lives than the other types irrespective of core fucosylation in mice, which also suggests the contribution of the nonreducing end structure. The present study provides basic information on the effects of core fucose-lacking N-linked Fc oligosaccharides on antibody biological activities.  相似文献   
100.
Dipeptidyl peptidase IV (DPP-IV) inhibitors are looked to as a potential new antidiabetic agent class. A series of [(S)-gamma-(arylamino)prolyl]thiazolidine compounds in which the electrophilic nitrile is removed are chemically stable DPP-IV inhibitors. To discover a structure for the gamma-substituent of the proline moiety more suitable for interacting with the S(2) pocket of DPP-IV, optimization focused on the gamma-substituent was carried out. The indoline compound 22e showed a DPP-IV-inhibitory activity 100-fold more potent than that of the prolylthiazolidine 10 and comparable to that of NVP-DPP728. It also displayed improved inhibitory selectivity for DPP-IV over DPP8 and DPP9 compared to compound 10. Indoline compounds such as 22e have a rigid conformation with double restriction of the aromatic moiety by proline and indoline structures to promote interaction with the binding site in the S(2) pocket of DPP-IV. The double restriction effect provides a potent inhibitory activity which compensates for the decrease in activity caused by removing the electrophilic nitrile.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号