首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2291篇
  免费   167篇
  2021年   18篇
  2020年   14篇
  2019年   13篇
  2018年   22篇
  2017年   14篇
  2016年   37篇
  2015年   62篇
  2014年   72篇
  2013年   107篇
  2012年   115篇
  2011年   112篇
  2010年   77篇
  2009年   85篇
  2008年   108篇
  2007年   159篇
  2006年   126篇
  2005年   129篇
  2004年   165篇
  2003年   116篇
  2002年   102篇
  2001年   36篇
  2000年   52篇
  1999年   48篇
  1998年   30篇
  1997年   30篇
  1996年   24篇
  1995年   24篇
  1994年   16篇
  1993年   17篇
  1992年   31篇
  1991年   34篇
  1990年   42篇
  1989年   27篇
  1988年   23篇
  1987年   37篇
  1986年   29篇
  1985年   26篇
  1984年   31篇
  1983年   21篇
  1982年   24篇
  1981年   22篇
  1980年   16篇
  1979年   29篇
  1978年   12篇
  1977年   17篇
  1975年   13篇
  1974年   17篇
  1973年   16篇
  1972年   9篇
  1970年   14篇
排序方式: 共有2458条查询结果,搜索用时 15 毫秒
91.
92.
A simple proton magnetic resonance spectroscopic method is described for the identification and and confirmation of several stereoisomeric paris of C27 stanols as well as their keto and acetate derivatives related to cholesterol. The method, which involves the use of lanthanide shift reagents, is useful in distinguishing clearly between the isomeric pairs differing only in the geometry of a functional group and/or of the A/B-ring junction in the steroid skeleton.  相似文献   
93.
Axial chirality in N,N-dimethylaminopyridines as well as N,N-dipropylaminopyridines bearing an internal carboxy group were evaluated based on their racemization barriers and circular dichroism spectra. The half-life of racemization of N,N-dipropylaminopyridine derivative 2 was estimated to be 19.7 days at 20°C. Its enantiomers isolated as optically active forms showed positive-negative and negative-positive Cotton effects for (+)- 2 and (−)- 2 , respectively, from 310 to 210 nm. Furthermore, (−)- 2 was applied as a chiral nucleophilic catalyst and exhibited asymmetric induction in acylative kinetic resolution of 1-(1-naphthyl)ethane-1-ol.  相似文献   
94.
95.
96.
We investigated the gene expression of matrix metalloproteinases-9 (MMP-9) and tissue inhibitors of matrix metalloproteinases-1 (TIMP-1) in peripheral blood cells from infected cattle with Mycobacterium avium subsp. paratuberculosis (Map) in the ELISA-negative subclinical stage compared with uninfected control cattle. Significant decreased MMP-9 expression and increased TIMP-1 expression were found in peripheral blood cells from Map-infected cattle after stimulation with Map lysate and Map purified protein derivative (PPD) than in control cattle by real-time RT-PCR analysis. In contrast to the uninfected controls, the activity of MMP-9 was also decreased in peripheral blood cell culture supernatants from Map-infected cattle at 24 hr after Map lysate and MapPPD stimulation by gelatin zymography analysis. As a result, the MMP-9 may play an important role in the development of Mycobacterium avium subsp. paratuberculosis disease.  相似文献   
97.
98.

Background

Despite the widespread use of sensors in engineering systems like robots and automation systems, the common paradigm is to have fixed sensor morphology tailored to fulfill a specific application. On the other hand, robotic systems are expected to operate in ever more uncertain environments. In order to cope with the challenge, it is worthy of note that biological systems show the importance of suitable sensor morphology and active sensing capability to handle different kinds of sensing tasks with particular requirements.

Methodology

This paper presents a robotics active sensing system which is able to adjust its sensor morphology in situ in order to sense different physical quantities with desirable sensing characteristics. The approach taken is to use thermoplastic adhesive material, i.e. Hot Melt Adhesive (HMA). It will be shown that the thermoplastic and thermoadhesive nature of HMA enables the system to repeatedly fabricate, attach and detach mechanical structures with a variety of shape and size to the robot end effector for sensing purposes. Via active sensing capability, the robotic system utilizes the structure to physically probe an unknown target object with suitable motion and transduce the arising physical stimuli into information usable by a camera as its only built-in sensor.

Conclusions/Significance

The efficacy of the proposed system is verified based on two results. Firstly, it is confirmed that suitable sensor morphology and active sensing capability enables the system to sense different physical quantities, i.e. softness and temperature, with desirable sensing characteristics. Secondly, given tasks of discriminating two visually indistinguishable objects with respect to softness and temperature, it is confirmed that the proposed robotic system is able to autonomously accomplish them. The way the results motivate new research directions which focus on in situ adjustment of sensor morphology will also be discussed.  相似文献   
99.
Human noroviruses (NoVs) are a major cause of non-bacterial gastroenteritis. Although histo-blood group antigens (HBGAs) have been implicated in the initial binding of NoV, the mechanism of that binding before internalization is not clear. To determine the involvement of NoVs and HBGAs in cell binding, we examined the localization of NoV virus-like particles (VLPs) and HBGAs in a human intestinal cell line and the human ileum biopsy specimens by immunofluorescence microscopy. The localizations of Ueno 7k VLPs (genogroup II.6) and each HBGA (type H1-, H2- and Leb-HBGAs) on the human intestinal cell line, Caco-2, were examined by confocal laser-scanning microscopy. To explore any interactions of NoVs and HBGAs in vivo, fresh biopsy specimens from human ileum were directly incubated with NoV VLPs and examined by immunofluorescence microscopy. We found that VLP binding depended on the state of cell differentiation, but not on the presence of HBGAs. In differentiated Caco-2 cells, we detected no type H1 HBGAs, but VLPs bound to the cells anyway. We incubated fresh biopsies of human ileum directly with VLPs, a model that better replicates the in vivo environment. VLPs mainly bound epithelial cells and goblet cells. Although the incubations were performed at 4°C to hinder internalization, VLPs were still detected inside cells. Our results suggest that VLPs utilize molecule(s) other than HBGAs during binding and internalization into cells.  相似文献   
100.
The colonial microalga Botryococcus braunii accumulates large quantities of hydrocarbons mainly in the extracellular space; most other oleaginous microalgae store lipids in the cytoplasm. Botryococcus braunii is classified into three principal races (A, B, and L) based on the types of hydrocarbons. Race B has attracted the most attention as an alternative to petroleum by its higher hydrocarbon contents than the other races and its hydrocarbon components, botryococcenes and methylsqualenes, both can be readily converted into biofuels. We studied race B using fluorescence and electron microscopy, and clarify the stage when extracellular hydrocarbon accumulation occurs during the cell cycle, in a correlation with the behavior and structural changes of the lipid bodies and discussed development of the algal colony. New accumulation of lipids on the cell surface occurred after cell division in the basolateral region of daughter cells. While lipid bodies were observed throughout the cell cycle, their size and inclusions were dynamically changing. When cells began dividing, the lipid bodies increased in size and inclusions until the extracellular accumulation of lipids started. Most of the lipids disappeared from the cytoplasm concomitant with the extracellular accumulation, and then reformed. We therefore hypothesize that lipid bodies produced during the growth of B. braunii are related to lipid secretion. New lipids secreted at the cell surface formed layers of oil droplets, to a maximum depth of six layers, and fused to form flattened, continuous sheets. The sheets that combined a pair of daughter cells remained during successive cellular divisions and the colony increased in size with increasing number of cells.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号