首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   5276篇
  免费   524篇
  5800篇
  2022年   41篇
  2021年   85篇
  2020年   49篇
  2019年   57篇
  2018年   57篇
  2017年   59篇
  2016年   123篇
  2015年   234篇
  2014年   249篇
  2013年   289篇
  2012年   406篇
  2011年   390篇
  2010年   229篇
  2009年   219篇
  2008年   331篇
  2007年   276篇
  2006年   282篇
  2005年   289篇
  2004年   290篇
  2003年   255篇
  2002年   284篇
  2001年   64篇
  2000年   39篇
  1999年   52篇
  1998年   74篇
  1997年   44篇
  1996年   47篇
  1995年   53篇
  1994年   51篇
  1993年   44篇
  1992年   33篇
  1991年   36篇
  1990年   49篇
  1989年   30篇
  1988年   32篇
  1987年   29篇
  1986年   29篇
  1985年   41篇
  1984年   46篇
  1983年   45篇
  1982年   35篇
  1981年   48篇
  1980年   40篇
  1979年   35篇
  1978年   27篇
  1977年   37篇
  1976年   29篇
  1974年   30篇
  1973年   28篇
  1972年   27篇
排序方式: 共有5800条查询结果,搜索用时 15 毫秒
61.
62.
63.
Entry into mitosis requires the activation of cdk1/cyclin B, while mitotic exit is achieved when the same kinase activity decreases, as cyclin B is degraded. Cyclin B proteolysis is mediated by the anaphase promoting complex, or APC, an E3 ligase that is active at anaphase in mitosis through G1. We have identified a G1 substrate of the APC that we have termed Tome-1, for trigger of mitotic entry. Tome-1 is a cytosolic protein required for proper activation of cdk1/cyclin B and mitotic entry. Tome-1 associates with Skp-1 and is required for degradation of the cdk1 inhibitory tyrosine kinase wee1; Tome-1 therefore appears to be acting as part of an SCF-type E3 for wee1. Degradation of Tome-1 during G1 allows for wee 1 accumulation during interphase, thereby providing a critical link between the APC and SCF pathways in regulation of cdk1/cyclin B activity and thus mitotic entry and exit.  相似文献   
64.
Medicago truncatula is used as a model plant for exploring the genetic and molecular determinants of nitrogen (N) nutrition in legumes. In this study, our aim was to detect quantitative trait loci (QTL) controlling plant N nutrition using a simple framework of carbon/N plant functioning stemming from crop physiology. This framework was based on efficiency variables which delineated the plant’s efficiency to take up and process carbon and N resources. A recombinant inbred line population (LR4) was grown in a glasshouse experiment under two contrasting nitrate concentrations. At low nitrate, symbiotic N2 fixation was the main N source for plant growth and a QTL with a large effect located on linkage group (LG) 8 affected all the traits. Significantly, efficiency variables were necessary both to precisely localize a second QTL on LG5 and to detect a third QTL involved in epistatic interactions on LG2. At high nitrate, nitrate assimilation was the main N source and a larger number of QTL with weaker effects were identified compared to low nitrate. Only two QTL were common to both nitrate treatments: a QTL of belowground biomass located at the bottom of LG3 and another one on LG6 related to three different variables (leaf area, specific N uptake and aboveground:belowground biomass ratio). Possible functions of several candidate genes underlying QTL of efficiency variables could be proposed. Altogether, our results provided new insights into the genetic control of N nutrition in M. truncatula. For instance, a novel result for M. truncatula was identification of two epistatic interactions in controlling plant N2 fixation. As such this study showed the value of a simple conceptual framework based on efficiency variables for studying genetic determinants of complex traits and particularly epistatic interactions.  相似文献   
65.
A new series of mono- and diphenylsubstituted silatranes and boratranes N(CH2CH2O)2(CHR3CR1R2O)MZ (M = Si, Z = CH2Cl, CCPh, H, OMenth, R1, R2, R3 = H, Ph; M = B, Z = nothing, R1, R2, R3 = H, Ph) have been synthesized. Both transalkoxylation and stepwise modification of a preformed metallatrane skeleton were used. The chloromethyl derivatives N(CH2CH2O)2(CHRCHRO)SiCH2Cl (R = H, Ph) react with tert-BuOK under intramolecular cycle expansion to give 1-tert-butoxy-2-carba-3-oxahomosilatranes N(CH2CH2O)(CH2CH2OCH2)(CHRCHRO)SiOtBu (R = H, Ph). The treatment of boratranes N(CH2CH2O)2(CH2CR1R2O)B (R1,R2 = H, Ph) with triflic acid and trimethylsilyl triflate results in the products of electrophilic attack at the nitrogen atom. The molecular structures of four silatranes and one boratrane bearing phenyl groups in the atrane skeleton were determined by the X-ray structure analysis.  相似文献   
66.
Critical events for vasoconstrictor and growth factor signal transduction include stimulation of phospholipase Cgamma (PLCgamma) and elevation of intracellular calcium. c-Src has been proposed as a common mediator for these signals activated by both G protein-coupled receptors (GPCRs) and tyrosine kinase-coupled receptors (TKRs). Here we show that the GPCR kinase-interacting protein-1 (GIT1) is a substrate for c-Src that undergoes tyrosine phosphorylation in response to angiotensin II (AngII) and EGF in vascular smooth muscle and 293 cells. GIT1 associates with PLCgamma via the PLCgamma Src homology 2 and 3 domains constitutively, and the interaction is unaltered by AngII and EGF. GIT1 interaction with PLCgamma is required for PLCgamma activation based on inhibition of tyrosine phosphorylation and calcium mobilization after GIT1 knockdown with antisense GIT1 oligonucleotides. GIT1 interacts with PLCgamma via a novel Spa homology domain (SHD) and a coiled-coil domain. Deletion mutation analysis showed that GIT1(SHD) is required for AngII- and EGF-mediated PLCgamma activation (measured by phosphorylation of Tyr783 and inositol 1,4,5-trisphosphate formation). We propose that GIT1 is a novel regulator of PLCgamma function that mediates PLCgamma activation by c-Src and integrates signal transduction by GPCRs and TKRs.  相似文献   
67.
Angiogenesis is essential for tumor growth and progression and is mediated by positive and negative regulators of vessel growth. Since angiogenic mediators found in patient serum have been postulated to reflect the angiogenic potential of a malignant tumor, we investigated the angiogenic activity in the serum of patients with transitional cell carcinoma (TCC). The data were correlated to tumor characteristics and the clinical course of the patients. Eighty-one patients with transitional cell carcinoma and 53 control persons were included in the study. Preoperative serum samples were collected and both vascular endothelial growth factor (VEGF) and basic fibroblast growth factor (bFGF) were quantified by ELISA. Additionally, the serum evoked proliferative activity on human umbilical vein endothelial cells (HUVEC) was evaluated. Data were compared to the clinical course of the patients. Serum of tumor patients significantly enhanced the proliferative capacity of HUVEC, compared to cells grown in standard culture medium (p = 0.0032), but not when compared to serum from control persons. Serum from patients with superficial TCC and well differentiated tumors induced a significantly higher angiogenic response (ANG(hi)) than serum from patients with poorly differentiated and invasive carcinomas (ANG(lo); p = 0.037). VEGF level of ANG(hi) serum was 384.22 +/- 247.76 pg/ml (n = 37) which significantly differed from mean VEGF level detected in ANG(lo) serum (247.72 +/- 211.93 pg/ml, n = 42; p = 0.019). Similarly, mean bFGF levels were 9.58 +/- 5.91 pg/ml in ANG(hi) serum versus 5.74 +/- 3.52 pg/ml) in ANG(lo) serum (p = 0.0043). A negative correlation was established between VEGF/bFGF serum concentration and patient prognosis. The experiments demonstrate a positive correlation between VEGF and bFGF serum level and endothelial proliferation in vitro. The inverse relationship between angiogenic activity and tumor stage might disclose information about angiogenesis and tumor progression in TCC.  相似文献   
68.
MEK1 and MEK2 are closely related, dual-specificity tyrosine/threonine protein kinases found in the Ras/Raf/MEK/ERK mitogen-activated protein kinase (MAPK) signaling pathway. Approximately 30% of all human cancers have a constitutively activated MAPK pathway, and constitutive activation of MEK1 results in cellular transformation. Here we present the X-ray structures of human MEK1 and MEK2, each determined as a ternary complex with MgATP and an inhibitor to a resolution of 2.4 A and 3.2 A, respectively. The structures reveal that MEK1 and MEK2 each have a unique inhibitor-binding pocket adjacent to the MgATP-binding site. The presence of the potent inhibitor induces several conformational changes in the unphosphorylated MEK1 and MEK2 enzymes that lock them into a closed but catalytically inactive species. Thus, the structures reported here reveal a novel, noncompetitive mechanism for protein kinase inhibition.  相似文献   
69.
The equilibria of oxygen binding to and kinetics of CO combination with the symmetrical iron-zinc hybrids of a series of variants of human adult hemoglobin A have been measured at pH 7 in the presence of inositol hexaphosphate (IHP). In addition, the kinetics of CO combination have also been measured in the absence of IHP. The hybrids have the heme groups of either the alpha or the beta subunits replaced by zinc protoporphyrin IX, which is unable to bind a ligand and is a good model for permanently deoxygenated heme. The variants examined involve residues located in the alpha1beta2 interface of the hemoglobin tetramer. Alterations of residues located in the hinge region of the interface are found to affect the properties of both the alpha and the beta subunits of the protein. In contrast, alterations of residues in the switch region of the interface have substantial effects only on the mutant subunit and are poorly communicated to the normal partner subunit. When the logarithms of the rate constants for the combination of the first CO molecule with a single subunit in the presence of IHP are analyzed as functions of the logarithms of the dissociation equilibrium constants for the binding of the first oxygen under the same conditions, a linear relationship is found. The relationship is somewhat different for the alpha and beta subunits, consistent with the well-known differences in the geometries of their ligand binding sites.  相似文献   
70.
Exposure to IR has been shown to induce the formation of senescence markers, a phenotype that coincides with lifelong delayed repair and regeneration of irradiated tissues. We hypothesized that IR‐induced senescence markers could persist long‐term in vivo, possibly contributing to the permanent reduction in tissue functionality. Here, we show that mouse tissues exposed to a sublethal dose of IR display persistent (up to 45 weeks, the maximum time analyzed) DNA damage foci and increased p16INK4a expression, two hallmarks of cellular senescence and aging. BrdU‐labeling experiments revealed that IR‐induced damaged cells are preferentially eliminated, at least partially, in a tissue‐dependent manner. Unexpectedly, the accumulation of damaged cells was found to occur independent from the DNA damage response modulator p53, and from an intact immune system, as their levels were similar in wild‐type and Rag2?/? γC?/? mice, the latter being deficient in T, B, and NK cells. Together, our results provide compelling evidence that exposure to IR induces long‐term expression of senescence markers in vivo, an effect that may contribute to the reduced tissue functionality observed in cancer survivors.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号