首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2306篇
  免费   133篇
  国内免费   1篇
  2022年   10篇
  2021年   23篇
  2020年   12篇
  2019年   18篇
  2018年   22篇
  2017年   20篇
  2016年   30篇
  2015年   73篇
  2014年   67篇
  2013年   103篇
  2012年   102篇
  2011年   129篇
  2010年   72篇
  2009年   65篇
  2008年   107篇
  2007年   104篇
  2006年   104篇
  2005年   99篇
  2004年   107篇
  2003年   102篇
  2002年   101篇
  2001年   96篇
  2000年   81篇
  1999年   68篇
  1998年   23篇
  1997年   29篇
  1996年   26篇
  1995年   17篇
  1994年   18篇
  1993年   17篇
  1992年   61篇
  1991年   43篇
  1990年   33篇
  1989年   41篇
  1988年   37篇
  1987年   42篇
  1986年   37篇
  1985年   48篇
  1984年   31篇
  1983年   23篇
  1982年   16篇
  1981年   18篇
  1980年   12篇
  1979年   23篇
  1976年   10篇
  1975年   15篇
  1974年   13篇
  1973年   10篇
  1972年   14篇
  1971年   11篇
排序方式: 共有2440条查询结果,搜索用时 62 毫秒
151.
The differentiation-inducing factor-1 (DIF-1) is a signal molecule that induces stalk cell formation in the cellular slime mold Dictyostelium discoideum, while DIF-1 and its analogs have been shown to possess antiproliferative activity in vitro in mammalian tumor cells. In the present study, we investigated the effects of DIF-1 and its analogs on normal (nontransformed) mammalian cells. Without affecting the cell morphology and cell number, DIF-1 at micromolar levels dose-dependently promoted the glucose uptake in confluent 3T3-L1 fibroblasts, which was not inhibited with wortmannin or LY294002 (inhibitors for phosphatidylinositol 3-kinase). DIF-1 affected neither the expression level of glucose transporter 1 nor the activities of four key enzymes involved in glucose metabolism, such as hexokinase, fluctose 6-phosphate kinase, pyruvate kinase, and glucose 6-phosphate dehydrogenase. Most importantly, stimulation with DIF-1 was found to induce the translocation of glucose transporter 1 from intracellular vesicles to the plasma membranes in the cells. In differentiated 3T3-L1 adipocytes, DIF-1 induced the translocation of glucose trasporter 1 (but not of glucose transporter 4) and promoted glucose uptake, which was not inhibited with wortmannin. These results indicate that DIF-1 induces glucose transporter 1 translocation and thereby promotes glucose uptake, at least in part, via a inhibitors for phosphatidylinositol 3-kinase/Akt-independent pathway in mammalian cells. Furthermore, analogs of DIF-1 that possess stronger antitumor activity than DIF-1 were less effective in promoting glucose consumption, suggesting that the mechanism of the action of DIF-1 for stimulating glucose uptake should be different from that for suppressing tumor cell growth.  相似文献   
152.
C3 photosynthesis is often limited by CO2 diffusivity or stomatal (gs) and mesophyll (gm) conductances. To characterize effects of stomatal closure induced by either high CO2 or abscisic acid (ABA) application on gm, we examined gs and gm in the wild type (Col‐0) and ost1 and slac1‐2 mutants of Arabidopsis thaliana grown at 390 or 780 μmol mol?1 CO2. Stomata of these mutants were reported to be insensitive to both high CO2 and ABA. When the ambient CO2 increased instantaneously, gm decreased in all these plants, whereas gs in ost1 and slac1‐2 was unchanged. Therefore, the decrease in gm in response to high CO2 occurred irrespective of the responses of gs. gm was mainly determined by the instantaneous CO2 concentration during the measurement and not markedly by the CO2 concentration during the growth. Exogenous application of ABA to Col‐0 caused the decrease in the intercellular CO2 concentration (Ci). With the decrease in Ci, gm did not increase but decreased, indicating that the response of gm to CO2 and that to ABA are differently regulated and that ABA content in the leaves plays an important role in the regulation of gm.  相似文献   
153.
Bone marrow development and endochondral bone formation occur simultaneously. During endochondral ossification, periosteal vasculatures and stromal progenitors invade the primary avascular cartilaginous anlage, which induces primitive marrow development. We previously determined that bone marrow podoplanin (PDPN)-expressing stromal cells exist in the perivascular microenvironment and promote megakaryopoiesis and erythropoiesis. In this study, we aimed to examine the involvement of PDPN-expressing stromal cells in postnatal bone marrow generation. Using histological analysis, we observed that periosteum-derived PDPN-expressing stromal cells infiltrated the cartilaginous anlage of the postnatal epiphysis and populated on the primitive vasculature of secondary ossification center. Furthermore, immunophenotyping and cellular characteristic analyses indicated that the PDPN-expressing stromal cells constituted a subpopulation of the skeletal stem cell lineage. In vitro xenovascular model cocultured with human umbilical vein endothelial cells and PDPN-expressing skeletal stem cell progenies showed that PDPN-expressing stromal cells maintained vascular integrity via the release of angiogenic factors and vascular basement membrane-related extracellular matrices. We show that in this process, Notch signal activation committed the PDPN-expressing stromal cells into a dominant state with basement membrane-related extracellular matrices, especially type IV collagens. Our findings suggest that the PDPN-expressing stromal cells regulate the integrity of the primitive vasculatures in the epiphyseal nascent marrow. To the best of our knowledge, this is the first study to comprehensively examine how PDPN-expressing stromal cells contribute to marrow development and homeostasis.  相似文献   
154.
Previous studies indicated that single-headed smooth muscle myosin and S1 (a single head fragment) are not regulated through phosphorylation of the regulatory light chain (RLC). To investigate the importance of the double-headedness of myosin and of the S2 region for the phosphorylation-dependent regulation, we made three types of recombinant mutant smooth muscle HMMs with one intact head and an N-terminally truncated head. The truncated head of Delta MD lacked the motor domain, that of Delta(MD+ELC) lacked the motor and essential light chain binding domains, and single-headed HMM had one intact head alone. The basal ATPase activities of the three mutants decreased as the KCl concentration became less than 0.1 M. Such a decrease was not observed for S1, which had no S2 region, suggesting that S2 is necessary for this myosin behavior. This activity decrease also disappeared when RLCs of Delta MD and Delta(MD+ELC), but that of single-headed HMM, were phosphorylated. When their RLCs were unphosphorylated, the three mutants exhibited similar actin-activated ATPase levels. However, when they were phosphorylated, the actin-activated ATPase activities of Delta MD and Delta(MD+ELC) increased to the S1 level, while that of single-headed HMM remained unchanged. Even in the phosphorylated state, the actin-activated ATPase activities of the three mutants and S1 were much lower than that of wild-type HMM. We propose that S2 has an inhibitory function that is canceled by an interaction between two phosphorylated RLCs. We also propose that a cooperative interaction between two motor domains is required for a higher level of actin activation.  相似文献   
155.
We identified a gene encoding a catalase from the anaerobic bacteria Desulfovibrio vulgaris (Miyazaki F), and the expression of its gene in Escherichia coli. The 3.3-kbp DNA fragment isolated from D. vulgaris (Miyazaki F) by double digestion with EcoRI and SalI was found to produce a protein that binds protoheme IX as a prosthetic group in E. coli. This DNA fragment contained a putative open reading frame (Kat) and one part of another open reading frame (ORF-1). The amino acid sequence of the amino terminus of the protein purified from the transformed cells was consistent with that deduced from the nucleotide sequence of Kat in the cloned fragment of D. vulgaris (Miyazaki F) DNA, which may include promoter and regulatory sequences. The nucleotide sequence of Kat indicates that the protein is composed of 479 amino acids per monomer. The recombinant catalase was found to be active in the decomposition of hydrogen peroxide, as are other catalases from aerobic organisms, but its K(m) value was much greater. The hydrogen peroxide stress against D. vulgaris (Miyazaki F) induced the activity for the decomposition of hydrogen peroxide somewhat, so the catalase gene may not work effectively in vivo.  相似文献   
156.
MID-1 is a Saccharomyces cerevisiae gene encoding a stretch-activated channel. Using MID-1 as a molecular probe, we isolated rat cDNA encoding a protein with four putative transmembrane domains. This gene encoded a protein of 541 amino acids. We also cloned the human homologue, which encoded 551 amino acids. Messenger RNA for this gene was expressed abundantly in the testis and moderately in the spleen, liver, kidney, heart, brain, and lung. In the testis, immunoreactivity of the gene product was detected both in the cytoplasm and the nucleus. When expressed in Chinese hamster ovary cells, the gene product was located in intracellular compartments including endoplasmic reticulum and the Golgi apparatus. When microsome fraction obtained from the transfected cells, but not from mock-transfected cells, was incorporated into the lipid bilayer, an anion channel activity was detected. Unitary conductance was 70 picosiemens in symmetric 150 mm KCl solution. We designated this gene Mid-1-related chloride channel (MCLC). MCLC encodes a new class of chloride channel expressed in intracellular compartments.  相似文献   
157.
This is the first report of a novel serine/threonine kinase, rabbit death-associated protein (DAP) kinase-related apoptosis-inducing protein kinase 1 (rDRAK1), involved in osteoclast apoptosis. We searched for osteoclast-specific genes from a cDNA library of highly enriched rabbit osteoclasts cultured on ivory. One of the cloned genes has a high homology with human DRAK1 (hDRAK1), which belongs to the DAP kinase subfamily of serine/threonine kinases. By screening a rabbit osteoclast cDNA library and 5'-RACE (rapid amplification of cDNA ends), we obtained a full length of this cDNA, termed rDRAK1. The sequencing data indicated that rDRAK1 has 88.0, 44.6, 38.7, and 42.3% identity with hDRAK1, DAP kinase, DRP-1, and ZIP (zipper-interacting protein) kinase, respectively. To clarify the role of DRAK1 in osteoclasts, we examined the effect of three osteoclast survival factors (interleukin-1, macrophage colony-stimulating factor, and osteoclast differentiation-inducing factor) on rDRAK1 mRNA expression and the effect of rDRAK1 overexpression on osteoclast apoptosis. The results suggested that these three survival factors were proved to inhibit rDRAK1 expression in rabbit osteoclasts. After transfection of a rDRAK1 expression vector into cultured osteoclasts, overexpressed rDRAK1 was localized exclusively to the nuclei and induced apoptosis. Hence, rDRAK1 may play an important role in the core apoptosis program in osteoclast.  相似文献   
158.
159.
p51 in the p53 tumor suppressor family, also referred to as p63, encodes multiple isoforms including p51A (TAp63gamma) and p51B (TAp63alpha). The p53 protein forms a tetramer, and its stability and activity are regulated by molecular association with viral and cellular proteins and by biochemical modifications. Using a yeast two-hybrid system, the p51A and p51B isoforms were examined for homotypic and heterotypic interactions in the p53 family proteins and for their affinity to the p53-regulatory factors. Results indicate a homotypic interaction dependent on the presumed oligomerization domain of the p51 proteins. The possibility of a weak heterotypic interaction between p51 and p73 proteins was suggested, while association between p51 and p53 appeared improbable. Furthermore, unlike p53, the p51 proteins failed to display an affinity to SV40 large T antigen or MDM2-family proteins. Having several features in common with p53, the p51 proteins may function in biological processes apart from p53.  相似文献   
160.
LL-Z1271alpha, a fungal metabolite, dose-dependently inhibited interleukin-1beta (IL-1beta) production in lipopolysaccharide (LPS)-stimulated human whole blood. Oral administration of LL-Z1271alpha to LPS-challenged mice caused significant lowering in the IL-1beta levels in peritoneal cavity. Data presented suggest that LL-Z1271alpha inhibits IL-1beta production by a novel mechanism as the inhibitory activity was not due to effects on caspase-1 (IL-1beta converting enzyme), the ATP-induced release mechanism or a lysosomotrophic effect.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号