首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2064篇
  免费   170篇
  2234篇
  2023年   1篇
  2022年   23篇
  2021年   31篇
  2020年   24篇
  2019年   26篇
  2018年   36篇
  2017年   28篇
  2016年   48篇
  2015年   108篇
  2014年   107篇
  2013年   128篇
  2012年   196篇
  2011年   154篇
  2010年   135篇
  2009年   124篇
  2008年   139篇
  2007年   154篇
  2006年   163篇
  2005年   122篇
  2004年   138篇
  2003年   115篇
  2002年   112篇
  2001年   15篇
  2000年   19篇
  1999年   16篇
  1998年   21篇
  1997年   13篇
  1996年   11篇
  1995年   6篇
  1994年   8篇
  1993年   6篇
  1992年   4篇
  1990年   1篇
  1989年   1篇
  1983年   1篇
排序方式: 共有2234条查询结果,搜索用时 18 毫秒
51.
NK cells differentiate in adult mice from bone marrow hemopoietic progenitors. Cytokines, including those that signal via receptors using the common cytokine receptor gamma-chain (gamma(c)), have been implicated at various stages of NK cell development. We have previously described committed NK cell precursors (NKPs), which have the capacity to generate NK cells, but not B, T, erythroid, or myeloid cells, after in vitro culture or transfer to a fetal thymic microenvironment. NKPs express the CD122 Ag (beta chain of the receptors for IL-2/IL-15), but lack other mature NK markers, including NK1.1, CD49b (DX5), or members of the Ly49 gene family. In this report, we have analyzed the roles for gamma(c)-dependent cytokines in the generation of bone marrow NKP and in their subsequent differentiation to mature NK cells in vivo. Normal numbers of NKPs are found in gamma(c)-deficient mice, suggesting that NK cell commitment is not dependent on IL-2, IL-4, IL-7, IL-9, IL-15, or IL-21. Although IL-2, IL-4, and IL-7 have been reported to influence NK cell differentiation, we find that mice deficient in any or all of these cytokines have normal NK cell numbers, phenotype, and effector functions. In contrast, IL-15 plays a dominant role in early NK cell differentiation by maintaining normal numbers of immature and mature NK cells in the bone marrow and spleen. Surprisingly, the few residual NK cells generated in absence of IL-15 appear relatively mature, expressing a variety of Ly49 receptors and demonstrating lytic and cytokine production capacity.  相似文献   
52.
Epidemiological studies suggest that chronic consumption of trans MUFA may alter muscle insulin sensitivity. The major sources of dietary trans MUFA (dairy fat vs. industrially hydrogenated oils) have different isomeric profiles and thus probably different metabolic consequences. These effects may involve alterations in muscle mitochondrial oxidative capacity, which may in turn promote insulin resistance if fatty acid oxidation is reduced. We report that in Wistar rats, an 8 week diet enriched (4% of energy intake) in either dairy, industrial, or control MUFA did not alter insulin and glucose responses to an intraperitoneal glucose tolerance test (1g/kg). In C2C12 myotubes, vaccenic and elaidic acids did not modify insulin sensitivity compared with oleic acid. Furthermore, the ex vivo total, mitochondrial and peroxisomal oxidation rates of [1-(14)C]oleic, vaccenic, and elaidic acids were similar in soleus and tibialis anterior rat muscle. Finally, an 8 week diet enriched in either dairy or industrial trans MUFA did not alter mitochondrial oxidative capacity in these two muscles compared with control MUFA but did induce a specific reduction in soleus mitochondrial ATP and superoxide anion production (P<0.01 vs. control). In conclusion, dietary trans MUFA of dairy or industrial origin have similar effects and do not impair muscle mitochondrial capacity and insulin sensitivity.  相似文献   
53.
Prion diseases are fatal, transmissible neurodegenerative diseases of the central nervous system. An abnormally protease-resistant and insoluble form (PrP(Sc)) of the normally soluble protease-sensitive host prion protein (PrP(C)) is the major component of the infectious prion. During the course of prion disease, PrP(Sc) accumulates primarily in the lymphoreticular and central nervous systems. Recent studies have shown that co-infection of prion-infected fibroblast cells with the Moloney murine leukemia virus (Mo-MuLV) strongly enhanced the release and spread of scrapie infectivity in cell culture, suggesting that retroviral coinfection might significantly influence prion spread and disease incubation times in vivo. We now show that another retrovirus, the murine leukemia virus Friend (F-MuLV), also enhanced the release and spread of scrapie infectivity in cell culture. However, peripheral co-infection of mice with both Friend virus and the mouse scrapie strain 22L did not alter scrapie disease incubation times, the levels of PrP(Sc) in the brain or spleen, or the distribution of pathological lesions in the brain. Thus, retroviral co-infection does not necessarily alter prion disease pathogenesis in vivo, most likely because of different cell-specific sites of replication for scrapie and F-MuLV.  相似文献   
54.
The uncoupling protein 1 (UCP1) is a mitochondrial protein that carries protons across the inner mitochondrial membrane. It has an important role in non-shivering thermogenesis, and recent evidence suggests its role in human adult metabolism. Using rapid solution exchange on solid supported membranes, we succeeded in measuring electrical currents generated by the transport activity of UCP1. The protein was purified from mouse brown adipose tissue, reconstituted in liposomes and absorbed on solid supported membranes. A fast pH jump activated the ion transport, and electrical signals could be recorded. The currents were characterized by a fast rise and a slow decay, were stable over time, inhibited by purine nucleotides and activated by fatty acids. This new assay permits direct observation of UCP1 activity in controlled cell-free conditions, and opens up new possibilities for UCP1 functional characterization and drug screening because of its robustness and its potential for automation.  相似文献   
55.
56.
Factor VII (FVII) is a vitamin K-dependent glycoprotein which, in its activated form (FVIIa), participates in the coagulation process by activating factor X and factor IX. FVII is secreted as single peptide chain of 406 residues. Plasma-derived FVII undergoes many post-translational modifications such as γ-carboxylation, N- and O-glycosylation, β-hydroxylation. Despite glycosylation of recombinant FVIIa has been fully characterized, nothing is reported on the N- and O-glycans of plasma-derived FVII (pd-FVII) and on their structural heterogeneity at each glycosylation site. N- and O-glycosylation sites and site specific heterogeneity of pd-FVII were studied by various complementary qualitative and quantitative techniques. A MALDI-MS analysis of the native protein indicated that FVII is a 50.1 kDa glycoprotein modified on two sites by diantennary, disialylated non-fucosylated (A2S2) glycans. LC–ESIMS/MS analysis revealed that both light chain and heavy chain were N-glycosylated mainly by A2S2 but also by triantennary sialylated glycans. Nevertheless, lower amounts of triantennary structures were found on Asn322 compared to Asn145. Moreover, the triantennary glycans were shown to be fucosylated. In parallel, quantitative analysis of the isolated glycans by capillary electrophoresis indicated that the diantennary structures represented about 50% of the total glycan content. Glycan sequencing using different glycanases led to the identification of triantennary difucosylated structures. Last, MS and MS/MS analysis revealed that FVII is O-glycosylated on the light chain at position Ser60 and Ser52 which are modified by oligosaccharide structures such as fucose and Glc(Xyl)0–1–2, respectively. These latter three O-glycans coexist in equal amounts in plasma-derived FVII.  相似文献   
57.
58.
Cobalt stress in Escherichia coli. The effect on the iron-sulfur proteins   总被引:1,自引:0,他引:1  
Cobalt is toxic for cells, but mechanisms of this toxicity are largely unknown. The biochemical and genetic experiments reported here demonstrate that iron-sulfur proteins are greatly affected in cobalt-treated Escherichia coli cells. Exposure of a wild-type strain to intracellular cobalt results in the inactivation of three selected iron-sulfur enzymes, the tRNA methylthio-transferase, aconitase, and ferrichrome reductase. Consistently, mutant strains lacking the [Fe-S] cluster assembly SUF machinery are hypersensitive to cobalt. Last, expression of iron uptake genes is increased in cells treated with cobalt. In vitro studies demonstrated that cobalt does not react directly with fully assembled [Fe-S] clusters. In contrast, it reacts with labile ones present in scaffold proteins (IscU, SufA) involved in iron-sulfur cluster biosynthesis. We propose a model wherein cobalt competes out iron during synthesis of [Fe-S] clusters in metabolically essential proteins.  相似文献   
59.
Classical quantitative trait loci (QTL) analysis and gene expression QTL (eQTL) were combined to identify the causal gene (or QTG) underlying a highly significant QTL controlling the variation of breast meat color in a F2 cross between divergent high-growth (HG) and low-growth (LG) chicken lines. Within this meat quality QTL, BCMO1 (Accession number GenBank: AJ271386), encoding the β-carotene 15, 15′-monooxygenase, a key enzyme in the conversion of β-carotene into colorless retinal, was a good functional candidate. Analysis of the abundance of BCMO1 mRNA in breast muscle of the HG x LG F2 population allowed for the identification of a strong cis eQTL. Moreover, reevaluation of the color QTL taking BCMO1 mRNA levels as a covariate indicated that BCMO1 mRNA levels entirely explained the variations in meat color. Two fully-linked single nucleotide polymorphisms (SNP) located within the proximal promoter of BCMO1 gene were identified. Haplotype substitution resulted in a marked difference in BCMO1 promoter activity in vitro. The association study in the F2 population revealed a three-fold difference in BCMO1 expression leading to a difference of 1 standard deviation in yellow color between the homozygous birds at this haplotype. This difference in meat yellow color was fully consistent with the difference in carotenoid content (i.e. lutein and zeaxanthin) evidenced between the two alternative haplotypes. A significant association between the haplotype, the level of BCMO1 expression and the yellow color of the meat was also recovered in an unrelated commercial broiler population. The mutation could be of economic importance for poultry production by making possible a gene-assisted selection for color, a determining aspect of meat quality. Moreover, this natural genetic diversity constitutes a new model for the study of β-carotene metabolism which may act upon diverse biological processes as precursor of the vitamin A.  相似文献   
60.
The overwhelming majority of DNA photoproducts in UV-irradiated spores is a unique thymine dimer called spore photoproduct (SP, 5-thymine-5,6-dihydrothymine). This lesion is repaired by the spore photoproduct lyase (SP lyase) enzyme that directly reverts SP to two unmodified thymines. The SP lyase is an S-adenosylmethionine-dependent iron-sulfur protein that belongs to the radical S-adenosylmethionine superfamily. In this study, by using a well characterized preparation of the SP lyase enzyme from Bacillus subtilis, we show that SP in the form of a dinucleoside monophosphate (spore photoproduct of thymidilyl-(3'-5')-thymidine) is efficiently repaired, allowing a kinetic characterization of the enzyme. The preparation of this new substrate is described, and its identity is confirmed by mass spectrometry and comparison with authentic spore photoproduct. The fact that the spore photoproduct of thymidilyl-(3'-5')-thymidine dimer is repaired by SP lyase may indicate that the SP lesion does not absolutely need to be contained within a single- or double-stranded DNA for recognition and repaired by the SP lyase enzyme.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号