首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   394篇
  免费   23篇
  国内免费   1篇
  418篇
  2023年   5篇
  2022年   2篇
  2021年   7篇
  2020年   7篇
  2019年   9篇
  2018年   8篇
  2017年   9篇
  2016年   12篇
  2015年   27篇
  2014年   29篇
  2013年   31篇
  2012年   33篇
  2011年   38篇
  2010年   15篇
  2009年   9篇
  2008年   12篇
  2007年   18篇
  2006年   13篇
  2005年   15篇
  2004年   8篇
  2003年   5篇
  2002年   3篇
  2001年   5篇
  2000年   5篇
  1999年   4篇
  1998年   4篇
  1996年   4篇
  1995年   2篇
  1994年   3篇
  1993年   3篇
  1992年   5篇
  1991年   3篇
  1990年   4篇
  1989年   3篇
  1988年   5篇
  1986年   4篇
  1985年   6篇
  1984年   3篇
  1983年   4篇
  1982年   2篇
  1980年   4篇
  1979年   4篇
  1978年   2篇
  1977年   2篇
  1976年   3篇
  1975年   4篇
  1974年   3篇
  1971年   2篇
  1960年   2篇
  1927年   1篇
排序方式: 共有418条查询结果,搜索用时 15 毫秒
31.
Retention forestry, which retains a portion of the original stand at the time of harvesting to maintain continuity of structural and compositional diversity, has been originally developed to mitigate the impacts of clear‐cutting. Retention of habitat trees and deadwood has since become common practice also in continuous‐cover forests of Central Europe. While the use of retention in these forests is plausible, the evidence base for its application is lacking, trade‐offs have not been quantified, it is not clear what support it receives from forest owners and other stakeholders and how it is best integrated into forest management practices. The Research Training Group ConFoBi (Conservation of Forest Biodiversity in Multiple‐use Landscapes of Central Europe) focusses on the effectiveness of retention forestry, combining ecological studies on forest biodiversity with social and economic studies of biodiversity conservation across multiple spatial scales. The aim of ConFoBi is to assess whether and how structural retention measures are appropriate for the conservation of forest biodiversity in uneven‐aged and selectively harvested continuous‐cover forests of temperate Europe. The study design is based on a pool of 135 plots (1 ha) distributed along gradients of forest connectivity and structure. The main objectives are (a) to investigate the effects of structural elements and landscape context on multiple taxa, including different trophic and functional groups, to evaluate the effectiveness of retention practices for biodiversity conservation; (b) to analyze how forest biodiversity conservation is perceived and practiced, and what costs and benefits it creates; and (c) to identify how biodiversity conservation can be effectively integrated in multi‐functional forest management. ConFoBi will quantify retention levels required across the landscape, as well as the socio‐economic prerequisites for their implementation by forest owners and managers. ConFoBi's research results will provide an evidence base for integrating biodiversity conservation into forest management in temperate forests.  相似文献   
32.
Relaxation parameters such as longitudinal relaxation are susceptible to artifacts such as spin diffusion, and can be affected by paramagnetic impurities as e.g. oxygen, which make a quantitative interpretation difficult. We present here the site-specific measurement of [1H]13C and [1H]15N heteronuclear rates in an immobilized protein. For methyls, a strong effect is expected due to the three-fold rotation of the methyl group. Quantification of the [1H]13C heteronuclear NOE in combination with 13C-R 1 can yield a more accurate analysis of side chain motional parameters. The observation of significant [1H]15N heteronuclear NOEs for certain backbone amides, as well as for specific asparagine/glutamine sidechain amides is consistent with MD simulations. The measurement of site-specific heteronuclear NOEs is enabled by the use of highly deuterated microcrystalline protein samples in which spin diffusion is reduced in comparison to protonated samples.  相似文献   
33.

Key message

Mid-parent values of Fusarium head blight (FHB) resistance tested across several locations are a good predictor of hybrid performance caused by a preponderance of additive gene action in wheat.

Abstract

Hybrid breeding is intensively discussed as one solution to boost yield and yield stability including an enhanced biotic stress resistance. Our objectives were to investigate (1) the heterosis for Fusarium head blight (FHB) resistance, (2) the importance of general (GCA) vs. specific combining ability (SCA) for FHB resistance, and (3) the possibility to predict the FHB resistance of the hybrids by the parental means. We re-analyzed phenotypic data of a large population comprising 1604 hybrids and their 120 female and 15 male parental lines evaluated in inoculation trials across seven environments. Mid-parent heterosis of FHB severity averaged ?9%, with a range from ?36 to +35%. Mean better parent heterosis was 2% and 78 of the hybrids significantly (P < 0.05) outperformed the best commercial check variety included in our study. FHB resistance was not correlated with grain yield in healthy status for lines (r = 0.01) and hybrids (r = 0.09, P < 0.01). While a preponderance of GCA variance (P < 0.01) was found, SCA variance was not significantly different from zero. Accuracy to predict hybrid performance of FHB severity based on mid-parent values and on GCA effects was high (r = 0.70 and 0.86, respectively; P < 0.01). Similarly, line per se performance and GCA effects were significantly correlated (r = 0.77; P < 0.01). The substantial level of mid-parent heterosis in the desired direction of decreased susceptibility and the negligible better parent heterosis suggest that hybrids are an attractive alternative variety type to improve FHB resistance.
  相似文献   
34.
The goal of this study was to investigate the effects of 'ecologically orientated' forest transformation on forest floor vegetation. Forest transformation, as defined by the BMBF southern Black Forest project group, is the process which converts even-aged spruce forest into structured continuous-cover forest, consisting principally of spruce (Picea abies), fir (Abies alba) and beech (Fagus sylvatica). In order to analyse the transformation process, four transformation stages were defined as part of a 'conceptual forest development model' (pure even-aged, species enrichment, structuring and continuous cover forest stage). Four forest districts representative of the southern Black Forest were selected for the study. The analysis included the separate classification of structures, sites, and ground vegetation. In a second step, the relationships between the three complexes were analysed. The influence of forest structure on ground vegetation was investigated by examining the relationships between so-called substructure types and ground vegetation types. The substructure types associated with the pure spruce stand, species enrichment and continuous cover forest stages exhibited a ground vegetation resembling that of the Luzulo-Fagetum and Luzulo-Abietetum, whereas the structuring stages exhibited a ground vegetation of the Galio-Fagetum type. Transformation of pure, even-aged spruce forest into mixed, uneven-aged continuous cover forest is considered an important silvicultural tool to combine the demands of sustainable timber production and nature conservation. Transformation brings about greater diversity in stand structure and tree species composition. The frequencies of acidophytic mosses and vascular plants in spruce forest decrease during the transformation process. The species requiring moderate base supply increase over the transitional stages. The continuous cover forest, the final stage of transformation, increasingly contains ground species of both, i.e., species normally associated with both conifer and deciduous forest.  相似文献   
35.

Background

Barley, globally the fourth most important cereal, provides food and beverages for humans and feed for animal husbandry. Maximizing grain yield under varying climate conditions largely depends on the optimal timing of flowering. Therefore, regulation of flowering time is of extraordinary importance to meet future food and feed demands. We developed the first barley nested association mapping (NAM) population, HEB-25, by crossing 25 wild barleys with one elite barley cultivar, and used it to dissect the genetic architecture of flowering time.

Results

Upon cultivation of 1,420 lines in multi-field trials and applying a genome-wide association study, eight major quantitative trait loci (QTL) were identified as main determinants to control flowering time in barley. These QTL accounted for 64% of the cross-validated proportion of explained genotypic variance (pG). The strongest single QTL effect corresponded to the known photoperiod response gene Ppd-H1. After sequencing the causative part of Ppd-H1, we differentiated twelve haplotypes in HEB-25, whereof the strongest exotic haplotype accelerated flowering time by 11 days compared to the elite barley haplotype. Applying a whole genome prediction model including main effects and epistatic interactions allowed predicting flowering time with an unmatched accuracy of 77% of cross-validated pG.

Conclusions

The elaborated causal models represent a fundamental step to explain flowering time in barley. In addition, our study confirms that the exotic biodiversity present in HEB-25 is a valuable toolbox to dissect the genetic architecture of important agronomic traits and to replenish the elite barley breeding pool with favorable, trait-improving exotic alleles.
  相似文献   
36.
Information about the extent and genomic distribution of linkage disequilibrium (LD) is of fundamental importance for association mapping. The main objectives of this study were to (1) investigate genetic diversity within germplasm groups of elite European maize (Zea mays L.) inbred lines, (2) examine the population structure of elite European maize germplasm, and (3) determine the extent and genomic distribution of LD between pairs of simple sequence repeat (SSR) markers. We examined genetic diversity and LD in a cross section of European and US elite breeding material comprising 147 inbred lines genotyped with 100 SSR markers. For gene diversity within each group, significant (P<0.05) differences existed among the groups. The LD was significant (P<0.05) for 49% of the SSR marker pairs in the 80 flint lines and for 56% of the SSR marker pairs in the 57 dent lines. The ratio of linked to unlinked loci in LD was 1.1 for both germplasm groups. The high incidence of LD suggests that the extent of LD between SSR markers should allow the detection of marker-phenotype associations in a genome scan. However, our results also indicate that a high proportion of the observed LD is generated by forces, such as relatedness, population stratification, and genetic drift, which cause a high risk of detecting false positives in association mapping.  相似文献   
37.
Wheat genetic diversity trends during domestication and breeding   总被引:25,自引:0,他引:25  
It has been claimed that plant breeding reduces genetic diversity in elite germplasm which could seriously jeopardize the continued ability to improve crops. The main objective of this study was to examine the loss of genetic diversity in spring bread wheat during (1) its domestication, (2) the change from traditional landrace cultivars (LCs) to modern breeding varieties, and (3) 50 years of international breeding. We studied 253 CIMMYT or CIMMYT-related modern wheat cultivars, LCs, and Triticum tauschii accessions, the D-genome donor of wheat, with 90 simple sequence repeat (SSR) markers dispersed across the wheat genome. A loss of genetic diversity was observed from T. tauschii to the LCs, and from the LCs to the elite breeding germplasm. Wheats genetic diversity was narrowed from 1950 to 1989, but was enhanced from 1990 to 1997. Our results indicate that breeders averted the narrowing of the wheat germplasm base and subsequently increased the genetic diversity through the introgression of novel materials. The LCs and T. tauschii contain numerous unique alleles that were absent in modern spring bread wheat cultivars. Consequently, both the LCs and T. tauschii represent useful sources for broadening the genetic base of elite wheat breeding germplasm.  相似文献   
38.
Understanding why populations of some migratory species show a directional change over time, i.e. increase or decrease, while others do not, remains a challenge for ecological research. One possible explanation is that species with smaller non‐breeding ranges may have more pronounced directional population trends, and their populations are thus more sensitive to the variation in environmental conditions in their non‐breeding quarters. According to the serial residency hypothesis, this sensitivity should lead to higher magnitudes (i.e. absolute values) of population trends for species with smaller non‐breeding ranges, with the direction of trend being either positive or negative depending on the nature of the environmental change. We tested this hypothesis using population trends over 2001–2012 for 36 sub‐Saharan migratory passerine birds breeding in Europe. Namely, we related the magnitude of the species' population trends to the size of their sub‐Saharan non‐breeding grounds, whilst controlling for factors including number of migration routes, non‐breeding habitat niche and wetness, breeding habitat type and life‐history strategy. The magnitude of species' population trends grew with decreasing absolute size of sub‐Saharan non‐breeding ranges, and this result remained significant when non‐breeding range size was expressed relative to the size of the breeding range. After repeating the analysis with the trend direction, the relationship with the non‐breeding range size disappeared, indicating that both population decreases and increases are frequent amongst species with small non‐breeding range sizes. Therefore, species with small non‐breeding ranges are at a higher risk of population decline due to adverse factors such as habitat loss or climatic extremes, but their populations are also more likely to increase when suitable conditions appear. As non‐breeding ranges may originate from stochasticity of non‐breeding site selection in naive birds (‘serial‐residency’ hypothesis), it is crucial to maintain a network of stable and resilient habitats over large areas of birds’ non‐breeding quarters.  相似文献   
39.
Four types of morphogenesis of the dermal skeleton can be distinguished. They differ with regard to scale growth, scale replacement and insertion of new scales during ontogeny. Three of the types occur exclusively in fossil sharks and have been found in only a few articulate specimens. In only one case (Jurassic hybodontids) it is possible to trace the phyletic transition from one type to another. The adaptive significance, both of different types of morphogenesis of the dermal skeleton as well as different types of scale shapes, is discussed.  相似文献   
40.
Capsule Populations of most forest bird species increased between 1982 and 2003, probably due to increased forest cover and changes in forest age-class composition.

Aims To determine population changes of forest birds in the Czech Republic and to determine their possible causes.

Methods Population data were collected via the Breeding Bird Monitoring Programme, which is based on skilled volunteers counting birds at point transects using a standardized technique. Population trends and indices for the period 1982–2003 were calculated for 47 species using log-linear models. Published data on development of forest cover and forest age composition in the Czech Republic were used to indicate environmental change over the same period.

Results Populations of most forest species increased between 1982 and 2003. There was also an increase in forest cover and an increase in the proportion of older forest age-classes. The increase in forest specialist birds was positively correlated with the average increase in forest coverage.

Conclusions The populations of Czech forest birds have increased in the last two decades. This contrasts with widely reported declines of farmland bird populations throughout Europe. The correlation between populations of specialized forest species and extent of forest habitat suggests that changes in land-use are an important factor. However, increasing cover of mature forests could have a similar effect on the populations of specialist species.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号