首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   65篇
  免费   4篇
  69篇
  2021年   2篇
  2020年   1篇
  2017年   1篇
  2016年   1篇
  2015年   2篇
  2014年   3篇
  2013年   5篇
  2012年   4篇
  2011年   6篇
  2010年   4篇
  2009年   3篇
  2008年   3篇
  2007年   2篇
  2006年   2篇
  2005年   3篇
  2004年   2篇
  2003年   3篇
  2002年   2篇
  2000年   2篇
  1996年   1篇
  1992年   2篇
  1986年   1篇
  1983年   1篇
  1982年   3篇
  1981年   1篇
  1979年   1篇
  1977年   2篇
  1976年   1篇
  1975年   1篇
  1974年   1篇
  1973年   1篇
  1972年   1篇
  1970年   1篇
排序方式: 共有69条查询结果,搜索用时 15 毫秒
61.
1. The carbon isotope discrimination properties of a representative of each of the three types of photosynthetic bacteria Chlorobium thiosulfatophilum, Rhodospirillum rubrum and Chromatium and of the C3-alga Chlamydomonas reinhardii were determined by measuring the ratio of 13CO2 to 12CO2 incorporated during photoautotrophic growth. 2. Chromatium and R. rubrum had isotope selection properties similar to those of C3-plants, whereas Chlorobium was significantly different. 3. The results suggest that Chromatium and R. rubrum assimilate CO2 mainly via ribulose 1,5-diphosphate carboxylase and the associated reactions of the reductive pentose phosphate cycle, whereas Chlorobium utilizes other mechanisms. Such mechanisms would include the ferredoxin-linked carboxylation enzymes and associated reactions of the reductive carboxylic acid cycle.Abbreviations RuDP ribulose 1,5-disphosphate - PEP phosphoenolpyruvate  相似文献   
62.
cAMP effector mechanisms. Novel twists for an 'old' signaling system   总被引:6,自引:0,他引:6  
Cyclic AMP (cAMP) has traditionally been thought to act exclusively through cAMP-dependent protein kinase (cAPK, PKA), but a growing number of cAMP effects are not attributable to general activation of cAPK. At present, cAMP is known also to directly regulate ion channels and the ubiquitous Rap guanine exchange factors Epac 1 and 2. Adding to the sophistication of cAMP signaling is the fact that (1) the cAPK holoenzyme is incompletely dissociated even at saturating cAMP, the level of free R subunit of cAPK being able to regulate the maximal activity of cAPK, (2) cAPK activity can be modulated by oxidative glutathionylation, and (3) cAPK is anchored close to relevant substrates, other signaling enzymes, and local compartments of cAMP. Finally, we will demonstrate an example of fine-tuning of cAMP signaling through synergistic induction of neurite extensions by cAPK and Epac.  相似文献   
63.
Rational engineering of enzyme stability   总被引:11,自引:0,他引:11  
During the past 15 years there has been a continuous flow of reports describing proteins stabilized by the introduction of mutations. These reports span a period from pioneering rational design work on small enzymes such as T4 lysozyme and barnase to protein design, and directed evolution. Concomitantly, the purification and characterization of naturally occurring hyperstable proteins has added to our understanding of protein stability. Along the way, many strategies for rational protein stabilization have been proposed, some of which (e.g. entropic stabilization by introduction of prolines or disulfide bridges) have reasonable success rates. On the other hand, comparative studies and efforts in directed evolution have revealed that there are many mutational strategies that lead to high stability, some of which are not easy to define and rationalize. Recent developments in the field include increasing awareness of the importance of the protein surface for stability, as well as the notion that normally a very limited number of mutations can yield a large increase in stability. Another development concerns the notion that there is a fundamental difference between the "laboratory stability" of small pure proteins that unfold reversibly and completely at high temperatures and "industrial stability", which is usually governed by partial unfolding processes followed by some kind of irreversible inactivation process (e.g. aggregation). Provided that one has sufficient knowledge of the mechanism of thermal inactivation, successful and efficient rational stabilization of enzymes can be achieved.  相似文献   
64.
65.
Ocean acidification is the increase in seawater pCO2 due to the uptake of atmospheric anthropogenic CO2, with the largest changes predicted to occur in the Arctic seas. For some marine organisms, this change in pCO2, and associated decrease in pH, represents a climate change‐related stressor. In this study, we investigated the gene expression patterns of nauplii of the Arctic copepod Calanus glacialis cultured at low pH levels. We have previously shown that organismal‐level performance (development, growth, respiration) of C. glacialis nauplii is unaffected by low pH. Here, we investigated the molecular‐level response to lowered pH in order to elucidate the physiological processes involved in this tolerance. Nauplii from wild‐caught C. glacialis were cultured at four pH levels (8.05, 7.9, 7.7, 7.5). At stage N6, mRNA was extracted and sequenced using RNA‐seq. The physiological functionality of the proteins identified was categorized using Gene Ontology and KEGG pathways. We found that the expression of 151 contigs varied significantly with pH on a continuous scale (93% downregulated with decreasing pH). Gene set enrichment analysis revealed that, of the processes downregulated, many were components of the universal cellular stress response, including DNA repair, redox regulation, protein folding, and proteolysis. Sodium:proton antiporters were among the processes significantly upregulated, indicating that these ion pumps were involved in maintaining cellular pH homeostasis. C. glacialis significantly alters its gene expression at low pH, although they maintain normal larval development. Understanding what confers tolerance to some species will support our ability to predict the effects of future ocean acidification on marine organisms.  相似文献   
66.
Malate dehydrogenase (MDH; EC 1.1.1.37) from strain NCIB 8327 of the green sulfur bacterium Chlorobium vibrioforme was purified to homogeneity by triazine dye affinity chromatography followed by gel filtration. Purification of MDH gave an approximately 1,000-fold increase in specific activity and recoveries of typically 15 to 20%. The criteria of purity were single bands on sodium dodecyl sulfate (SDS) and nondenaturing polyacrylamide electrophoresis (PAGE) and the detection of a single N terminus in an Edman degradation analysis. MDH activity was detected in purified preparations by activity staining of gels in the direction of malate oxidation. PAGE and gel filtration (Sephadex G-100) analyses showed the native enzyme to be a dimer composed of identical subunits both at room temperature and at 4 degrees C. The molecular weight of the native enzyme as estimated by gel filtration was 77,000 and by gradient PAGE was 74,000. The subunit molecular weight as estimated by SDS-gradient PAGE was 37,500. N-terminal sequences of MDHs from C. vibrioforme, Chlorobium tepidum, and Heliobacterium gestii are presented. There are obvious key sequence similarities in MDHs from the phototrophic green bacteria. The sequences presented probably possess a stretch of amino acids involved in dinucleotide binding which is similar to that of Chloroflexus aurantiacus MDH and other classes of dehydrogenase enzymes but unique among MDHs.  相似文献   
67.
68.
Exposure of dark grown resting Euglena to light induced the synthesis of chloroplast valyl-tRNA synthetase. Ethanol, a specific inhibitor of Euglena chloroplast development had little effect on chloroplast valyl-tRNA synthetase induction during the first 12 h of light exposure. Ethanol, however, completely inhibited enzyme synthesis between 12–72 h of light exposure. Malate, an alternative carbon source, had little effect on the photoinduction of valyl-tRNA synthetase. When dark grown resting cells were exposed to 2 h of light and returned to the dark, chloroplast valyl-tRNA synthetase continued to accumulate for 8–12 h at a rate which was less than the rate in cells maintained continuously in the light. The mutant strain W3BUL lacks detectable chloroplast DNA and phototransformable protochlorophyllide, but retains a plastid remnant. Exposure of strain W3BUL to light induced the synthesis of chloroplast valyl-tRNA synthetase and enzyme induction was not inhibited by ethanol. After 72 h of light exposure in the presence or absence of ethanol, enzyme levels in strain W3BUL were comparable to the levels found in the wildtype strain after 8–14 h of light exposure. These results suggest that the nonchloroplast photoreceptor regulates the initial phase of enzyme synthesis. Mutant strain W10BSmL differs from strain W3BUL in that the plastid remnant if present, is greatly reduced. Chloroplast valyl-tRNA synthetase was undetectable in the strain W10BSmL suggesting that the levels of active, cytoplasmically synthesized, chloroplast localized enzymes may be related to the developmental status of the chloroplast through the extent to which the enzyme precursor can be accumulated and or posttranslationally processed into an active enzyme within the chloroplast or chloroplast remnant.This research was supported by National Institutes of Health Grant GM26994, Biomedical support grant RR-0755 and funds from the Research Council, University of Nebraska  相似文献   
69.
The gene encoding malate dehydrogenase (MDH) from Chloroflexus aurantiacus was cloned, sequenced, and analyzed. The mdh gene corresponded to a polypeptide of 309 amino acids with a molecular mass of 32,717 Da. The primary structure and the coenzyme-binding domain showed a high degree of similarity to lactate dehydrogenase (LDH), whereas the conserved amino acids that participate in substrate binding were those typical of MDHs. Using PCR techniques, the mdh gene was cloned in the expression vector pET11a, and large amounts of active C. aurantiacus MDH were produced in Escherichia coli after induction with isopropyl β-d-thiogalactoside. The expressed enzyme thus obtained was purified and retained full activity at 55° C. High levels of expression of mdh were also observed when the gene and its flanking sequences were cloned into pUC18/19, indicating that the putative σ70 promoter sequences found upstream of the C. aurantiacus mdh functioned in E. coli. When these sequences were deleted, the expression in E. coli was reduced dramatically. Received: 24 October 1995 / Accepted: 23 February 1996  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号