首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   545篇
  免费   38篇
  国内免费   1篇
  2021年   7篇
  2019年   7篇
  2018年   8篇
  2017年   18篇
  2016年   12篇
  2015年   19篇
  2014年   18篇
  2013年   24篇
  2012年   45篇
  2011年   26篇
  2010年   23篇
  2009年   24篇
  2008年   13篇
  2007年   17篇
  2006年   19篇
  2005年   7篇
  2004年   16篇
  2003年   14篇
  2002年   12篇
  2001年   25篇
  2000年   22篇
  1999年   13篇
  1998年   5篇
  1997年   3篇
  1996年   4篇
  1995年   7篇
  1993年   3篇
  1992年   14篇
  1991年   12篇
  1990年   10篇
  1989年   8篇
  1988年   7篇
  1987年   8篇
  1986年   13篇
  1985年   10篇
  1984年   6篇
  1983年   6篇
  1982年   3篇
  1981年   6篇
  1979年   8篇
  1978年   6篇
  1976年   5篇
  1975年   9篇
  1974年   6篇
  1973年   4篇
  1971年   5篇
  1967年   2篇
  1934年   2篇
  1929年   3篇
  1928年   2篇
排序方式: 共有584条查询结果,搜索用时 15 毫秒
171.
Pituitary and placental glycoprotein hormones are heterodimers with alpha-subunits of identical primary structure, but dissimilar beta-subunits. Regions of structural similarity between the beta-subunits might be involved in interaction with the homologous alpha-subunits, and regions of structural dissimilarity could, therefore, be candidates for receptor interactions. A restrained matrix dot-plot analysis identified hFSH-beta-(8-32) and hFSH-beta-(55-65) as candidates for interaction with alpha-subunit. Therefore, by subtraction, hFSH-beta-(33-54) and hFSH-beta-(66-111) seemed candidates for regions of interaction with receptor. In a previous report we demonstrated that hFSH-beta-(33-53) represented a receptor-binding region of hFSH-beta. Analysis of structural parameters (flexibility, surface probability, secondary structure prediction, etc.) indicates similarities between hFSH-beta-(33-53) and hFSH-beta-(85-95), suggesting the latter might be the component of hFSH-beta-(61-111) interacting with the receptor. Testing of 11 synthetic peptides, corresponding to the primary structure of hFSH-beta, demonstrated that hFSH-beta-(31-45)-peptide amide, were unique in ability to inhibit 125I-follicle-stimulating hormone binding to receptor. hFSH-beta-(81-95)-peptide amide also stimulated estradiol biosynthesis in Sertoli cell cultures. The correlation between binding inhibition and surface probability, flexibility, and predicted secondary structure (alpha, extended, and turn) was highly significant (R2 = 0.87, p less than 0.0001). Regression significance for these parameters, taken individually, were very poor. Receptor-binding regions, therefore, appear to be characterized by a particular and complex arrangement of secondary structure motifs, surface probability, and flexibility.  相似文献   
172.
To determine the generality of developmental mechanisms involved in the construction of the insect nervous system, the embryonic development of the peripheral nervous system in the grasshopper Schistocerca gregaria was characterized at the level of identified neurons and nerve branches and then compared to that previously described from the fly Drosophila melanogaster. For this, immunocytochemistry using a neuron-specific antibody was carried out on staged grasshopper embryos. Our results show that initially a simple peripheral nerve scaffolding is established in each segment of the animal. This scaffolding consists of a pair of intersegmental nerves that are formed by identified afferent and efferent pioneer neurons and a pair of segmental nerves that are formed by afferent pioneers situated in limb buds. Subsequently, identified sets of sensory neurons differentiate in a stereotyped spatiotemporal pattern in dorsal, lateral and ventral clusters in each segment and project their axons onto these nerves. Although segment-specific differences exist, serial homologs of the developing nerves and sensory neurons can be identified. A comparison of these results with those obtained from Drosophila shows that virtually the same pattern of peripheral nerves and sensory structures is formed in both species. This indicates that the construction of the peripheral nervous system in extremely divergent modern insects relies on conserved developmental mechanisms that evolved in ancestral insects over 300 million years ago.  相似文献   
173.
174.
Understanding dispersal and habitat selection behaviours is central to many problems in ecology, evolution and conservation. One factor often hypothesized to influence habitat selection by dispersers is the natal environment experienced by juveniles. Nonetheless, evidence for the effect of natal environment on dispersing, wild vertebrates remains limited. Using 18 years of nesting and mark–resight data across an entire North American geographical range of an endangered bird, the snail kite (Rostrhamus sociabilis), we tested for natal effects on breeding-site selection by dispersers and its consequences for reproductive success and population structure. Dispersing snail kites were more likely to nest in wetlands of the same habitat type (lacustrine or palustrine) as their natal wetland, independent of dispersal distance, but this preference declined with age and if individuals were born during droughts. Importantly, dispersing kites that bred in natal-like habitats had lower nest success and productivity than kites that did not. These behaviours help explain recently described population connectivity and spatial structure across their geographical range and reveal that assortative breeding is occurring, where birds are more likely to breed with individuals born in the same wetland type as their natal habitat. Natal environments can thus have long-term and large-scale effects on populations in nature, even in highly mobile animals.  相似文献   
175.
176.
We present a highly selective approach for the targeting of inflammation with a multivalent polymeric probe. Dendritic polyglycerol was employed to synthesize a polyanionic macromolecular conjugate with a near-infrared fluorescent dye related to Indocyanine Green (ICG). On the basis of the dense assembly of sulfate groups which were generated from the polyol core, the resulting polyglycerol sulfate (molecular weight 12 kD with ~70 sulfate groups) targets factors of inflammation (IC(50) of 3-6 nM for inhibition of L-selectin binding) and is specifically transported into inflammatory cells. The in vivo accumulation studied by near-IR fluorescence imaging in an animal model of rheumatoid arthritis demonstrated fast and selective uptake which enabled the differentiation of diseased joints (score 1-3) with a 3.5-fold higher fluorescence level and a signal maximum at 60 min post injection. Localization in tissues using fluorescence histology showed that the conjugates are deposited in the inflammatory infiltrate in the synovial membrane, whereas nonsulfated control was not detected in association with disease. Hence, this type of polymeric imaging probe is an alternative to current bioconjugates and provides future options for targeted imaging and drug delivery.  相似文献   
177.
Autosomal dominant polycystic kidney disease (ADPKD) is characterized by formation of renal cysts that destroy the kidney. Mutations in PKD1 and PKD2, encoding polycystins-1 and -2, cause ADPKD. Polycystins are thought to function in primary cilia, but it is not well understood how these and other proteins are targeted to cilia. Here, we provide the first genetic and biochemical link between polycystins and the exocyst, a highly-conserved eight-protein membrane trafficking complex. We show that knockdown of exocyst component Sec10 yields cellular phenotypes associated with ADPKD, including loss of flow-generated calcium increases, hyperproliferation, and abnormal activation of MAPK. Sec10 knockdown in zebrafish phenocopies many aspects of polycystin-2 knockdown-including curly tail up, left-right patterning defects, glomerular expansion, and MAPK activation-suggesting that the exocyst is required for pkd2 function in vivo. We observe a synergistic genetic interaction between zebrafish sec10 and pkd2 for many of these cilia-related phenotypes. Importantly, we demonstrate a biochemical interaction between Sec10 and the ciliary proteins polycystin-2, IFT88, and IFT20 and co-localization of the exocyst and polycystin-2 at the primary cilium. Our work supports a model in which the exocyst is required for the ciliary localization of polycystin-2, thus allowing for polycystin-2 function in cellular processes.  相似文献   
178.
Enrichment is widely used as tool for managing fearfulness, undesirable behaviors, and stress in captive animals, and for studying exploration and personality. Inconsistencies in previous studies of physiological and behavioral responses to enrichment led us to hypothesize that enrichment and its removal are stressful environmental changes to which the hormone corticosterone and fearfulness, activity, and exploration behaviors ought to be sensitive. We conducted two experiments with a captive population of wild-caught Clark's nutcrackers (Nucifraga columbiana) to assess responses to short- (10-d) and long-term (3-mo) enrichment, their removal, and the influence of novelty, within the same animal. Variation in an integrated measure of corticosterone from feathers, combined with video recordings of behaviors, suggests that how individuals perceive enrichment and its removal depends on the duration of exposure. Short- and long-term enrichment elicited different physiological responses, with the former acting as a stressor and birds exhibiting acclimation to the latter. Non-novel enrichment evoked the strongest corticosterone responses of all the treatments, suggesting that the second exposure to the same objects acted as a physiological cue, and that acclimation was overridden by negative past experience. Birds showed weak behavioral responses that were not related to corticosterone. By demonstrating that an integrated measure of glucocorticoid physiology varies significantly with changes to enrichment in the absence of agonistic interactions, our study sheds light on potential mechanisms driving physiological and behavioral responses to environmental change.  相似文献   
179.
180.
The complete neuronal repertoire of the central brain of Drosophila originates from only approximately 100 pairs of neural stem cells, or neuroblasts. Each neuroblast produces a highly stereotyped lineage of neurons which innervate specific compartments of the brain. Neuroblasts undergo two rounds of mitotic activity: embryonic divisions produce lineages of primary neurons that build the larval nervous system; after a brief quiescence, the neuroblasts go through a second round of divisions in larval stage to produce secondary neurons which are integrated into the adult nervous system. Here we investigate the lineages that are associated with the larval antennal lobe, one of the most widely studied neuronal systems in fly. We find that the same five neuroblasts responsible for the adult antennal lobe also produce the antennal lobe of the larval brain. However, there are notable differences in the composition of larval (primary) lineages and their adult (secondary) counterparts. Significantly, in the adult, two lineages (lNB/BAlc and adNB/BAmv3) produce uniglomerular projection neurons connecting the antennal lobe with the mushroom body and lateral horn; another lineage, vNB/BAla1, generates multiglomerular neurons reaching the lateral horn directly. lNB/BAlc, as well as a fourth lineage, vlNB/BAla2, generate a diversity of local interneurons. We describe a fifth, previously unknown lineage, BAlp4, which connects the posterior part of the antennal lobe and the neighboring tritocerebrum (gustatory center) with a higher brain center located adjacent to the mushroom body. In the larva, only one of these lineages, adNB/BAmv3, generates all uniglomerular projection neurons. Also as in the adult, lNB/BAlc and vlNB/BAla2 produce local interneurons which, in terms of diversity in architecture and transmitter expression, resemble their adult counterparts. In addition, lineages lNB/BAlc and vNB/BAla1, as well as the newly described BAlp4, form numerous types of projection neurons which along the same major axon pathways (antennal tracts) used by the antennal projection neurons, but which form connections that include regions outside the “classical” olfactory circuit triad antennal lobe-mushroom body-lateral horn. Our work will benefit functional studies of the larval olfactory circuit, and shed light on the relationship between larval and adult neurons.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号