首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   256篇
  免费   27篇
  国内免费   2篇
  285篇
  2021年   5篇
  2020年   3篇
  2019年   4篇
  2018年   2篇
  2017年   7篇
  2016年   6篇
  2015年   3篇
  2014年   12篇
  2013年   13篇
  2012年   15篇
  2011年   18篇
  2010年   9篇
  2009年   9篇
  2008年   9篇
  2007年   6篇
  2006年   13篇
  2005年   9篇
  2004年   7篇
  2003年   3篇
  2002年   8篇
  2001年   8篇
  2000年   9篇
  1999年   6篇
  1998年   9篇
  1997年   2篇
  1992年   4篇
  1991年   5篇
  1990年   9篇
  1989年   6篇
  1988年   7篇
  1987年   6篇
  1986年   3篇
  1985年   2篇
  1984年   10篇
  1982年   2篇
  1981年   2篇
  1980年   2篇
  1979年   1篇
  1977年   3篇
  1976年   2篇
  1974年   7篇
  1973年   4篇
  1972年   1篇
  1971年   4篇
  1970年   1篇
  1969年   1篇
  1968年   1篇
  1967年   2篇
  1938年   1篇
  1925年   1篇
排序方式: 共有285条查询结果,搜索用时 0 毫秒
81.
Sinorhizobium meliloti infects leguminous plants resulting in a nitrogen-fixing symbiosis. Free living cells accumulate poly(3-hydroxybutyrate) (PHB) as carbon and energy source under imbalanced growth conditions. The cphA1 7120 gene encoding a cyanophycin (CGP) synthetase of Anabaena sp. PCC7120 in plasmids pVLT31::cphA1 7120 and pBBR1MCS-3::cphA1 7120 was expressed in the wild-type S. meliloti 1021 and in a phbC-negative mutant generated in this study. Expression of cphA1 7120 and accumulation of CGP in cells were studied in various media. Yeast mannitol broth (YMB) and pBBR1MCS-3::cphA1 7120 yielded the highest CGP contents in both S. meliloti 1021 strains. Supplying the YMB medium with isopropyl-β-D-thiogalactopyranoside, aspartic acid, and arginine enhanced CGP contents about 2.5- and 2.8-fold in S. meliloti 1021 (pBBR1MCS-3::cphA1 7120) and S. meliloti 1021 phbCΩKm (pBBR1MCS-3::cphA1 7120), respectively. Varying the nitrogen-to-carbon ratio in the medium enhanced the CGP content further to 43.8% (w/w) of cell dry weight (CDW) in recombinant cells of S. meliloti 1021 phbCΩKm (pBBR1MCS-3::cphA1 7120). Cells of S. meliloti 1021 (pBBR1MCS-3::cphA1 7120) accumulated CGP up to 39.6% in addition to 12.1% PHB (w/w, of CDW). CGP from the S. meliloti strains consisted of equimolar amounts of aspartic acid and arginine and contained no other amino acids even if the medium was supplemented with glutamic acid, citrulline, ornithine, or lysine. CGP isolated from cells of S. meliloti 1021 (pBBR1MCS-3::cphA1 7120) and S. meliloti 1021 phbCΩKm (pBBR1MCS-3::cphA1 7120) exhibited average molecular weights between 20 and 25 kDa, whereas CGP isolated from Escherichia coli S17-1 (pBBR1MCS-3::cphA1 7120) exhibited average molecular weight between 22 and 30 kDa. Co-expression of cyanophycinase from Anabaena sp. PCC7120 encoded by cphB1 7120 in cphA1 7120-positive E. coli S17-1, S. meliloti 1021, and its phbC-negative mutant gave cyanophycinase activities in crude extracts, and no CGP granules occurred. A higher PHB content in S. meliloti 1021 (pBBR1MCS-3::cphB1 7120::cphA1 7120) in comparison to the control indicated that the cells used CGP degradation product (β-aspartate-arginine dipeptide) to fuel PHB biosynthesis.  相似文献   
82.
83.
Two-dimensional polyacrylamide gel electrophoresis (2D PAGE), in combination with matrix-assisted laser desorption ionization-time of flight analysis, and the recently revealed genome sequence of Ralstonia eutropha H16 were employed to detect and identify proteins that are differentially expressed during different phases of poly(3-hydroxybutyric acid) (PHB) metabolism. For this, a modified protein extraction protocol applicable to PHB-harboring cells was developed to enable 2D PAGE-based proteome analysis of such cells. Subsequently, samples from (i) the exponential growth phase, (ii) the stationary growth phase permissive for PHB biosynthesis, and (iii) a phase permissive for PHB mobilization were analyzed. Among several proteins exhibiting quantitative changes during the time course of a cultivation experiment, flagellin, which is the main protein of bacterial flagella, was identified. Initial investigations that report on changes of flagellation for R. eutropha were done, but 2D PAGE and electron microscopic examinations of cells revealed clear evidence that R. eutropha exhibited further significant changes in flagellation depending on the life cycle, nutritional supply, and, in particular, PHB metabolism. The results of our study suggest that R. eutropha is strongly flagellated in the exponential growth phase and loses a certain number of flagella in transition to the stationary phase. In the stationary phase under conditions permissive for PHB biosynthesis, flagellation of cells admittedly stagnated. However, under conditions permissive for intracellular PHB mobilization after a nitrogen source was added to cells that are carbon deprived but with full PHB accumulation, flagella are lost. This might be due to a degradation of flagella; at least, the cells stopped flagellin synthesis while normal degradation continued. In contrast, under nutrient limitation or the loss of phasins, cells retained their flagella.  相似文献   
84.
85.
The coagulating gland of the rat synthesizes two prevalent secretory proteins (transglutaminase and 115 K) that are discharched in a different manner, one being secreted in an apocrine fashion (transglutaminase) and the other one in a merocrine way (115 K). Differences in the intra- cellular pathway and the release of either protein were studied using immunofluorescence on semithin sections, immunoelectron microscopy of preembedding-processed chopper sections and postembedding-processed ultrathin sections of rat coagulating gland. Immunohistochemical staining using an anti-transglutaminase antibody resulted in dense labeling of the cytoplasm of secretory cells and their apical blebs, whereas the cisternae of the rough endoplasmic reticulum and the Golgi apparatus were completely unlabeled. When, on the contrary, the anti-115 K antiserum was used, dense labeling of the cisternae of the rough endoplasmic reticulum, the Golgi apparatus, and the secretory granules was seen. Intraluminal secretion was also labeled, but the secretory blebs remained unlabeled. Our findings show that, in the coagulating gland of the male rat, the two secretory proteins studied are processed in parallel, but at completely different intracellular pathways. They are released via different extrusion mechanisms. Transglutaminase is synthesized outside the endoplasmic reticulum, reaches the apical cell pole by free flow in the cytoplasm, and is released via apocrine blebs, the membranes of which appear to be derived from the apical plasma membrane. The protein 115 K, on the other hand, follows the classic route, being synthesized within the cisternae of rough endoplasmic reticulum, subsequently glycosylated in the Golgi apparatus, and released in a merocrine fashion. The mutual exclusion of the two secretory pathways and the regulation of the alternative release mechanism are still unresolved issues.  相似文献   
86.
87.
Flowers of the genus Arum are known to attract dung‐breeding flies and beetles through olfactory deceit. In addition to this strategy, the genus has evolved several other pollination mechanisms. The present study aimed to characterize the pollination strategies of the Cretan Arum species by investigating the flowering phenology, thermogeny, inflorescence odours, and the pollinating fauna. The results obtained show that Arum cyrenaicum and Arum concinnatum emit a strong dung smell and exhibit the distinctive features associated with this pollination syndrome. Both species are highly thermogenic, have a similar odour profile and attract small‐bodied Diptera. Although sharing the same habitat, these two plant species are never found growing sympatrically as a result of the early blooming period of A. cyrenaicum. By contrast, Arum creticum and Arum idaeum have evolved a more traditional and mutually beneficial pollination mechanism. The stinking smell has been replaced by a more flower‐like odour that attracts bees (Lasioglossum sp.) and, occasionally, bugs (Dionconotus cruentatus). Although attracting the same pollinator, the main compound present in the odour of A. creticum is different from that of A. idaeum. Principal component analysis (PCA), based on physiologically active components of the flower odours determined by testing on the antenna of the Lasioglossum bee, revealed two different clusters, indicating that pollinators can potentially discriminate between the odours of the two species. A further PCA on the main floral odour volatiles as identified by gas chroatography‐mass spectroscopy from all the Arum species under investigation displayed odour‐based similarities and differences among the species. The PCA‐gas chomotography‐electroantennographic detection active peaks analysis showed that the two species, A. creticum and A. idaeum, form two groups and are clearly separated from A. cyrenaicum and A. concinnatum, which, conversely, cluster together. The evolutionary forces and selective pressures leading to diversification of pollination mechanisms in the Cretan Arum spp. are discussed. © 2010 The Linnean Society of London, Biological Journal of the Linnean Society, 2010, 101 , 991–1001.  相似文献   
88.
Secondary metabolites derived from benzoic acid (BA) are of central importance in the interactions of plants with pests, pathogens, and symbionts and are potentially important in plant development. Peroxisomal β-oxidation has recently been shown to contribute to BA biosynthesis in plants, but not all of the enzymes involved have been defined. In this report, we demonstrate that the peroxisomal ATP-binding cassette transporter COMATOSE is required for the accumulation of benzoylated secondary metabolites in Arabidopsis (Arabidopsis thaliana) seeds, including benzoylated glucosinolates and substituted hydroxybenzoylcholines. The ABNORMAL INFLORESCENCE MERISTEM protein, one of two multifunctional proteins encoded by Arabidopsis, is essential for the accumulation of these compounds, and MULTIFUNCTIONAL PROTEIN2 contributes to the synthesis of substituted hydroxybenzoylcholines. Of the two major 3-ketoacyl coenzyme A thiolases, KAT2 plays the primary role in BA synthesis. Thus, BA biosynthesis in Arabidopsis employs the same core set of β-oxidation enzymes as in the synthesis of indole-3-acetic acid from indole-3-butyric acid.Many important secondary metabolites in plants are derived from, or incorporate, benzoic acid (BA). These include compounds found in root exudates, inflorescences, stems, and flower volatiles (D’Auria and Gershenzon, 2005). BA is also potentially a precursor for the plant hormone salicylic acid (SA; Wildermuth et al., 2001). In Arabidopsis (Arabidopsis thaliana), benzoylated glucosinolates (BGs) accumulate in seeds, presumably as a deterrent against animal feeding. Thus, BA metabolites are believed to play key roles in the interactions of plants with microbial and animal pests as well as in beneficial relationships such as pollination systems (Boatright et al., 2004). Understanding the pathways and control of BA synthesis in plants, therefore, is very important.Three different pathways for the synthesis of BA have been proposed for plants (Boatright et al., 2004; Wildermuth, 2006). These begin with the first committed step of the phenylpropanoid pathway, the deamination of Phe by Phe ammonia lyase to produce trans-cinnamic acid (CA). CA can then be oxidized by CoA-independent reactions in the cytosol, or it may be activated with CoA and proceed through one cycle of peroxisomal β-oxidation. Alternatively, BA synthesis may proceed via a third, CoA-dependent but β-oxidation-independent, pathway that combines elements of the first two pathways (Wildermuth, 2006). Recent studies in Petunia hybrida have highlighted the importance of the peroxisomal β-oxidation pathway in the production of BA for incorporation into floral volatile benzenoids. Enzymes identified in this pathway to date are a cinnamate:CoA ligase (PhCNL/PhAAE [for acyl-activating enzyme]) that activates CA (Colquhoun et al., 2012; Klempien et al., 2012), a multifunctional protein (PhMFP) that hydrates and oxidizes the trans-cinnamoyl-CoA (Qualley et al., 2012), and a 3-ketoacyl CoA thiolase (PhKAT1) that cleaves the resultant β-keto thioester (Van Moerkercke et al., 2009).Seeds of Arabidopsis accumulate appreciable amounts of BGs (Reichelt et al., 2002; Kliebenstein et al., 2007). Thus, while free BA is not detected in Arabidopsis seeds (Ibdah and Pichersky, 2009), the accumulation of BGs and other BA-containing secondary metabolites in Arabidopsis seeds provides a powerful experimental system with which to determine the pathway and potential control of BA synthesis in plants. For example, a peroxisomal acyl-CoA ligase (BZO1, for benzoyloxy glucosinolate) has been identified in Arabidopsis that is closely related to PhCNL1 and is required for BG production in seeds (Kliebenstein et al., 2007). BZO1 has recently been shown to be an AAE with cinnamate:CoA ligase activity (Lee et al., 2012).To further investigate the requirement for peroxisomal β-oxidation in BA synthesis, and to identify key enzymes involved in Arabidopsis, we analyzed BA-containing secondary metabolites (BGs and substituted hydroxybenzoylated choline esters) of seeds from a suite of β-oxidation mutants covering the key steps of β-oxidation, including substrate import, activation, oxidation, and thiolysis. This work identifies specific isozymes in Arabidopsis that mediate these steps, defines a new role for ABNORMAL INFLORESCENCE MERISTEM (AIM1), and determines a route for the entry of CA into peroxisomes.  相似文献   
89.
90.
Intraspecific plant diversity can modify the properties of associated arthropod communities and plant fitness. However, it is not well understood which plant traits determine these ecological effects. We explored the effect of intraspecific chemical diversity among neighbouring plants on the associated invertebrate community and plant traits. In a common garden experiment, intraspecific diversity among neighbouring plants was manipulated using three plant populations of wild cabbage that differ in foliar glucosinolates. Plants were larger, harboured more herbivores, but were less damaged when plant diversity was increased. Glucosinolate concentration differentially correlated with generalist and specialist herbivore abundance. Glucosinolate composition correlated with plant damage, while in polycultures, variation in glucosinolate concentrations among neighbouring plants correlated positively with herbivore diversity and negatively with plant damage levels. The results suggest that intraspecific variation in secondary chemistry among neighbouring plants is important in determining the structure of the associated insect community and positively affects plant performance.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号