首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   340篇
  免费   11篇
  351篇
  2024年   1篇
  2022年   5篇
  2021年   11篇
  2020年   5篇
  2019年   5篇
  2018年   6篇
  2016年   11篇
  2015年   10篇
  2014年   19篇
  2013年   19篇
  2012年   36篇
  2011年   31篇
  2010年   14篇
  2009年   19篇
  2008年   31篇
  2007年   21篇
  2006年   15篇
  2005年   12篇
  2004年   17篇
  2003年   15篇
  2002年   4篇
  2001年   1篇
  2000年   4篇
  1999年   4篇
  1997年   2篇
  1996年   1篇
  1995年   1篇
  1994年   2篇
  1993年   4篇
  1992年   4篇
  1991年   2篇
  1990年   1篇
  1989年   6篇
  1986年   2篇
  1983年   1篇
  1982年   2篇
  1981年   1篇
  1979年   1篇
  1978年   2篇
  1967年   1篇
  1966年   1篇
  1963年   1篇
排序方式: 共有351条查询结果,搜索用时 15 毫秒
121.
The technique of tissue engineering is developing for the restoration of lost tissues. This new technique requires cells that fabricate tissue. Mesenchymal stem cells in bone marrow have been used as the cell source for this technique; however, dental pulp cells have recently been shown to possess stem-cell-like properties. We earlier demonstrated that dental pulp cells proliferate and produce an extracellular matrix that subsequently becomes mineralized in vitro. We now report that such dental pulp cells (first to eighth passage) produced bone instead of dentin when those cells were implanted into subcutaneous sites in immunocompromised mice with HA/TCP powder as their carrier. This evidence shows that dental pulp cells are the common progenitors of odontoblasts and osteoblasts, or dental pulp cells are mesenchymal stem cells themselves. It is expected that dental pulp cells can be a useful candidate cell source for tissue engineering, and contain the potential of new therapeutic approaches for the restoration of damaged or diseased tissue.  相似文献   
122.
123.
Cyanobacteria have unique photoreceptors, cyanobacteriochromes, that show diverse spectral properties to sense near-UV/visible lights. Certain cyanobacteriochromes have been shown to regulate cellular phototaxis or chromatic acclimation of photosynthetic pigments. Some cyanobacteriochromes have output domains involved in bacterial signaling using a second messenger cyclic dimeric GMP (c-di-GMP), but its role in cyanobacteria remains elusive. Here, we characterize the recombinant Tlr0924 from a thermophilic cyanobacterium Thermosynechococcus elongatus, which was expressed in a cyanobacterial system. The protein reversibly photoconverts between blue- and green-absorbing forms, which is consistent with the protein prepared from Escherichia coli, and has diguanylate cyclase activity, which is enhanced 38-fold by blue light compared with green light. Therefore, Tlr0924 is a blue light-activated diguanylate cyclase. The protein''s relatively low affinity (10.5 mm) for Mg2+, which is essential for diguanylate cyclase activity, suggests that Mg2+ might also regulate c-di-GMP signaling. Finally, we show that blue light irradiation under low temperature is responsible for Thermosynechococcus vulcanus cell aggregation, which is abolished when tlr0924 is disrupted, suggesting that Tlr0924 mediates blue light-induced cell aggregation by producing c-di-GMP. Given our results, we propose the name “sesA (sessility-A)” for tlr0924. This is the first report for cyanobacteriochrome-dependent regulation of a sessile/planktonic lifestyle in cyanobacteria via c-di-GMP.  相似文献   
124.
Strategies to stimulate revascularization are valuable for cardiovascular diseases. Here we identify neuron-derived neurotrophic factor (NDNF)/epidermacan as a secreted molecule that is up-regulated in endothelial cells in ischemic limbs of mice. NDNF was secreted from cultured human endothelial cells, and its secretion was stimulated by hypoxia. NDNF promoted endothelial cell network formation and survival in vitro through activation of Akt/endothelial NOS (eNOS) signaling involving integrin αvβ3. Conversely, siRNA-mediated knockdown of NDNF in endothelial cells led to reduction of cellular responses and basal Akt signaling. Intramuscular overexpression of NDNF led to enhanced blood flow recovery and capillary density in ischemic limbs of mice, which was accompanied by enhanced phosphorylation of Akt and eNOS. The stimulatory actions of NDNF on perfusion recovery in ischemic muscles of mice were abolished by eNOS deficiency or NOS inhibition. Furthermore, siRNA-mediated reduction of NDNF in muscles of mice resulted in reduction of perfusion recovery and phosphorylation of Akt and eNOS in response to ischemia. Our data indicate that NDNF acts as an endogenous modulator that promotes endothelial cell function and ischemia-induced revascularization through eNOS-dependent mechanisms. Thus, NDNF can represent a therapeutic target for the manipulation of ischemic vascular disorders.  相似文献   
125.
126.
127.
Genetically-encoded biosensors based on the principle of F?rster resonance energy transfer (FRET) have been widely used in biology to visualize the spatiotemporal dynamics of signaling molecules. Despite the increasing multitude of these biosensors, their application has been mostly limited to cultured cells with transient biosensor expression, due to particular difficulties in the development of transgenic mice that express FRET biosensors. In this study, we report the efficient generation of transgenic mouse lines expressing heritable and functional biosensors for ERK and PKA. These transgenic mice were created by the cytoplasmic co-injection of Tol2 transposase mRNA and a circular plasmid harbouring Tol2 recombination sites. High expression of the biosensors in a wide range of cell types allowed us to screen newborn mice simply by inspection. Observation of these transgenic mice by two-photon excitation microscopy yielded real-time activity maps of ERK and PKA in various tissues, with greatly improved signal-to-background ratios. Our transgenic mice may be bred into diverse genetic backgrounds; moreover, the protocol we have developed paves the way for the generation of transgenic mice that express other FRET biosensors, with important applications in the characterization of physiological and pathological signal transduction events in addition to drug development and screening.  相似文献   
128.
129.
Nerve apposition on nicotinic acetylcholine receptor clusters and invagination of the post-synaptic membrane (i.e. secondary fold formation) occur by embryonic day 18.5 at the neuromuscular junctions (NMJs) in mouse skeletal muscles. Finding the molecules expressed at the NMJ at this stage of development may help elucidating how the strong linkage between a nerve terminal and a muscle fiber is established. Immunohistochemical analyses indicated that the membrane-anchored matrix metalloproteinase regulator RECK was enriched at the NMJ in adult skeletal muscles. Confocal and electron microscopy revealed the localization of RECK immunoreactivity in secondary folds and subsynaptic intracellular compartments in muscles. Time course studies indicated that RECK immunoreactivity becomes associated with the NMJ in the diaphragm at around embryonic day 18.5 and thereafter. These findings, together with known properties of RECK, support the hypothesis that RECK participates in NMJ formation and/or maintenance, possibly by protecting extracellular components, such as synaptic basal laminae, from proteolytic degradation.  相似文献   
130.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号