首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   409篇
  免费   16篇
  2022年   3篇
  2021年   11篇
  2020年   5篇
  2019年   6篇
  2018年   6篇
  2017年   1篇
  2016年   10篇
  2015年   10篇
  2014年   19篇
  2013年   17篇
  2012年   38篇
  2011年   32篇
  2010年   13篇
  2009年   20篇
  2008年   32篇
  2007年   23篇
  2006年   18篇
  2005年   13篇
  2004年   22篇
  2003年   20篇
  2002年   5篇
  2001年   5篇
  2000年   4篇
  1999年   10篇
  1998年   5篇
  1997年   6篇
  1996年   6篇
  1995年   3篇
  1994年   1篇
  1993年   5篇
  1992年   8篇
  1991年   2篇
  1990年   4篇
  1989年   9篇
  1988年   5篇
  1987年   1篇
  1986年   1篇
  1985年   2篇
  1983年   4篇
  1982年   4篇
  1981年   2篇
  1980年   1篇
  1979年   2篇
  1978年   2篇
  1977年   1篇
  1971年   2篇
  1970年   1篇
  1967年   1篇
  1966年   1篇
  1965年   2篇
排序方式: 共有425条查询结果,搜索用时 359 毫秒
61.
62.
The gamma-aminobutyric acid, type B (GABAB) receptor is a heterodimeric receptor consisting of two complementary subunits, GABAB1 receptor (GBR1) and GABAB2 receptor (GBR2). GBR1 is responsible for GABA binding, whereas GBR2 is considered to perform a critical role in signal transduction toward downstream targets. Therefore, precise communication between GBR1 and GBR2 is thought to be essential for the proper signal transduction process. However, biochemical data describing the interaction of the two subunits, especially for the extracellular regions, are not sufficient. Thus we began by developing a protein expression system of the soluble extracellular regions. One of the soluble recombinant GBR1 proteins exhibited a ligand binding ability, which is similar to that of the full-length GBR1, and thus the ligand-binding domain was determined. Direct interaction between GBR1 and GBR2 extracellular soluble fragments was confirmed by co-expression followed by affinity column chromatography and a sucrose density gradient sedimentation. In addition, we also found homo-oligomeric states of these soluble extracellular regions. The interaction between the two soluble extracellular regions caused the enhancement of the agonist affinity for GBR1 as previously reported in a cell-based assay. These results not only open the way to future structural studies but also highlight the role of the interaction between the extracellular regions, which controls agonist affinity to the heterodimeric receptor.  相似文献   
63.
64.
We examined the effects of the mutual substitution of amino acid residues at positions 216 and 219 between rat CYP2D1 and CYP2D2 on their microsomal contents and enzymatic functions using a yeast cell expression system and 5-methoxy-N,N-diisopropyltryptamine (5-MeO-DIPT) as a substrate. CYP2D1 has amino acid residues, leucine and valine, at positions of 216 and 219, respectively, whereas CYP2D2 has phenylalanine and aspartic acid at the same positions. In reduced carbon monoxide-difference spectroscopic analysis, the substitution of Asp-219 of CYP2D2 by valine markedly increased a peak at 450 nm and concomitantly decreased a peak at 420 nm, while the replacement of Phe-216 of CYP2D2 with leucine gave no observable change. The double substitution of Phe-216 and Asp-219 by leucine and valine, respectively, yielded a typical CYP spectrum. The substitution of Val-219 of CYP2D1 by aspartic acid decreased the CYP content to one-half, whereas the replacement of Leu-216 with phenylalanine did not have any effect. The double substitution of Leu-216 and Val-219 of CYP2D1 by phenylalanine and aspartic acid, respectively, diminished the CYP content by 90%. CYP2D1 catalyzed both 5-MeO-DIPT N-deisopropylation and O-demethylation at relatively low levels, while CYP2D2 catalyzed 5-MeO-DIPT O-demethylation efficiently. The substitution of the amino acid at position 216 substantially increased 5-MeO-DIPT oxidation activities of the two CYP2D enzymes. The replacement of the amino acid at position 219 increased the 5-MeO-DIPT O- and N-dealkylation activities of CYP2D1, whereas it decreased the 5-MeO-DIPT O-demethylation activity of CYP2D2. These results indicate that amino acid residues at positions 216 and 219 have important roles in the enzymatic functions of rat CYP2D1 and CYP2D2.  相似文献   
65.
The adipose-derived plasma protein, adiponectin (APN), has various protective effects on cardiovascular diseases. In this study, we show that endogenous APN is required for full cyclooxygenase-2 (COX-2) induction by ischemia-reperfusion injury in the heart in vivo. In rat neonatal cardiac myocytes, APN-induced COX-2 expression was reduced by treatment with a sphingosine kinase-1 (SphK-1) inhibitor or siRNA targeting SphK-1. Treatment with a sphingosine-1-phosphate (S1P) receptor antagonist also diminished COX-2 expression in response to APN stimulation. These findings suggest that APN is a physiological regulator of COX-2 signaling in the heart and that this regulation occurs in part via a SphK-1-S1P receptor dependent mechanism in cardiac myocytes.  相似文献   
66.
67.
Ames's strains of Salmonella typhimurium were used to evaluate the mutagenic activity of airbone particulate materials collected at six different points in the industrial area of Ohmuta and the residential area Fukuoka. Tests were done in presence of rat-liver S-9 fraction isolated from rats that had been treated with Aroclor 1254. When the number of revertant colonies per plate was plotted against the amount of methanol extract of particulate air pollutants, using strain TA98, approximately linear relationships were observed for active samples. Generally, mutagenic activity of the samples increased in proportion to the density of air pollutants. In our system, 38--349 microng of methanol extract, from 0.225--4.51 m3 of air from the factory districts in Ohmuta City gave 100 his+ revertants per plate. On the other hand, 54--2300 microng of air pollutants, from 1.29--14.1 m3 of air from the residential districts in Fukuoka City, gave a comparable activity. Every sample from each area had mutagenic activity. Chemicals in air pollutants were fractionated by alumina column chromatography and identified by gas chromatography and mass spectrometry. More than 28 compounds, including 12 unknown substances were identified as polycyclic hydrocarbons. Twelve of these compounds are already known to be carcinogens and to induce reversions to histidine independence in strain TA98 of Salmonella.  相似文献   
68.

Background

Lecithin-cholesterol acyltransferase (LCAT) is believed to be involved in reverse cholesterol transport, which is known to play a key role in suppression of atherosclerosis. However, recent investigations have demonstrated that higher LCAT activity, measured in terms of the serum cholesterol esterification rate by an endogenous substrate method, is associated with increased formation of triglyceride (TG)-rich lipoproteins (TRLs), leading to a decrease in the low-density lipoprotein (LDL) particle size. The purpose of this hospital-based longitudinal study was to clarify the causal relationship between changes in the LCAT activity and changes in the LDL-particle size.

Methods

The subjects were a total of 335 patients, derived from our previous study cohort, with one or more risk factors for atherosclerotic cardiovascular disease (ASCVD). For this study, we measured the LDL-particle size (relative LDL migration [LDL-Rm value]) by polyacrylamide gel electrophoresis in the subjects, along with the changes in the LCAT activity, at the end of a follow-up period of at least 1 year.

Results

The results revealed that the absolute change (Δ) in the LDL-particle size increased significantly as the quartile of Δ LCAT activity increased (p =?0.01). A multi-logistic regression adjusted-analysis revealed that Δ LCAT activity in the fourth quartile as compared to that in the first quartile was independently predictive of an increased LDL-particle size (odds ratio [95% confidence interval]: 2.03 [1.02/4.04], p =?0.04). Moreover, the ? LCAT activity was also positively correlated with ? TRL-related markers (i.e., TG, remnant particle-like cholesterol [RLP-C], apolipoprotein B, apolipoprotein C-2, and apolipoprotein C-3).

Conclusions

The results lend support to the hypothesis that increased LCAT activity may be associated with increased formation of TRLs, leading to a reduction in the LDL-particle size in patients at a high risk for ASCVD. To reduce the risk of ASCVD, it may be important to focus not only on the quantitative changes in the serum LDL-cholesterol levels, but also on the LCAT activity.

Trial registration

UMIN (https://upload.umin.ac.jp/cgi-bin/ctr/ctr_reg_list.cgi) Study ID: UMIN000033228 retrospectively registered 2 July 2018.
  相似文献   
69.
Biselyngbyaside, an 18-membered macrolide glycoside from marine cyanobacteria, and its derivatives are known to be sarco/endoplasmic reticulum Ca2+ ATPase (SERCA) inhibitors. Recently, a SERCA orthologue of the malaria parasite, PfATP6, has attracted attention as a malarial drug target. To provide a novel drug lead, we designed new synthetic analogs of biselyngbyolide B, the aglycone of biselyngbyaside, based on the co-crystal structure of SERCA with biselyngbyolide B, and synthesized them using the established synthetic route for biselyngbyolide B. Their biological activities against malarial parasites were evaluated.  相似文献   
70.
We investigated the properties of the permeability transition pore (PTP) in Saccharomyces cerevisiae in agar-embedded mitochondria (AEM) and agar-embedded cells (AEC) and its role in yeast death. In AEM, ethanol-induced pore opening, as indicated by the release of calcein and mitochondrial membrane depolarization, can be inhibited by CsA, by Cpr3 deficiency, and by the antioxidant glutathione. Notably, the pore opening is inhibited, when mitochondria are preloaded by EGTA or Fluo3 to chelate matrix Ca2+, or are pretreated with 4-Br A23187 to extract matrix Ca2+, prior to agar-embedding, or when pore opening is induced in the presence of EGTA; opened pores are re-closed by sequential treatment with CsA, 4-Br A23187 plus EGTA and NADH, indicating endogenous matrix Ca2+ involvement. CsA also inhibits the pore opening with low conductance triggered by exogenous Ca2+ transport with ETH129. In AEC, the treatment of tert-butylhydroperoxide, a pro-oxidant that triggers transient pore opening in high conductance in AEM, induces yeast death, which is also dependent on CsA and Cpr3. Furthermore, AEMs from mutants lacking three ADP/ATP carrier (AAC) isoforms and with defective ATP synthase dimerization exhibit high and low conductance pore openings with CsA sensitivity, respectively. Collectively, these data show that the yeast PTP is regulated by Cpr3, endogenous matrix Ca2+, and reactive oxygen species, and that it is involved in yeast death; furthermore, ATP synthase dimers play a key role in CsA-sensitive pore formation, while AACs are dispensable.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号