首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   489篇
  免费   28篇
  国内免费   3篇
  520篇
  2023年   18篇
  2022年   30篇
  2021年   42篇
  2020年   22篇
  2019年   29篇
  2018年   30篇
  2017年   15篇
  2016年   26篇
  2015年   23篇
  2014年   30篇
  2013年   54篇
  2012年   40篇
  2011年   30篇
  2010年   22篇
  2009年   5篇
  2008年   15篇
  2007年   8篇
  2006年   8篇
  2005年   9篇
  2004年   12篇
  2003年   6篇
  2002年   8篇
  2001年   7篇
  2000年   5篇
  1999年   6篇
  1998年   3篇
  1997年   4篇
  1996年   2篇
  1995年   1篇
  1994年   3篇
  1992年   3篇
  1985年   1篇
  1984年   1篇
  1973年   1篇
  1872年   1篇
排序方式: 共有520条查询结果,搜索用时 15 毫秒
81.
Globally among biotic stresses, diseases like blight, rust and blast constitute prime constraints for reducing wheat productivity especially in Bangladesh. For sustainable productivity, the development of disease-resistant lines and high yielding varieties is vital and necessary. This study was conducted using 122 advanced breeding lines of wheat including 21 varieties developed by Bangladesh Wheat and Maize Research Institute (BAMRI) with aims to identify genotypes having high yield potential and resistance to leaf blight, leaf rust and blast diseases. These genotypes were evaluated for resistance against leaf blight and leaf rust at Dinajpur and wheat blast at Jashore under field condition. Out of 122 genotypes tested, 20 lines were selected as resistant to leaf blight based on the area under the diseases progress curve (AUDPC) under both irrigated timely sown (ITS) and irrigated late sown (ILS) conditions. Forty-two genotypes were found completely free from leaf rust infection, 59 genotypes were identified as resistant, and 13 genotypes were identified as moderately resistant to leaf rust. Eighteen genotypes were immune against wheat blast, 42 genotypes were categorized as resistant, and 26 genotypes were identified as moderately resistant to wheat blast. Molecular data revealed that the 16 genotypes showed a positive 2NS segment among the 18 immune genotypes selected against wheat blast under field conditions. The genotypes BAW 1322, BAW 1295, and BAW 1203 can be used as earlier maturing genotypes and the genotypes BAW 1372, BAW 1373, BAW 1297 and BAW 1364 can be used for lodging tolerant due to short plant height. The genotypes WMRI Gom 1, BAW 1349 and BAW 1350 can be selected for bold grain and the genotypes WMRI Gom 1, BAW 1297, BAW 1377 can be used as high yielder for optimum seeding condition but genotypes BAW 1377 and BAW 1366 can be used for late sown condition. The selected resistant genotypes against specific diseases can be used in the further breeding program to develop wheat varieties having higher disease resistance and yield potential.  相似文献   
82.
83.
Yee  KK; Costanzo  RM 《Chemical senses》1998,23(5):513-519
Following recovery from olfactory nerve transection, animals regain their ability to discriminate between odors. Odor discrimination is restored after new neurons establish connections with the olfactory bulb. However, it is not known if the new connections alter odor quality perception. To address this question, 20 adult hamsters were first trained to discriminate between cinnamon and strawberry odors. After reaching criterion (> or = 90% correct response), half of the animals received a bilateral nerve transection (BTX) and half a surgical sham procedure. Animals were not tested again until day 40, a point in recovery when connections are re-established with the bulb. When BTX animals were tested without food reinforcement, they could not perform the odor discrimination task. Sham animals, however, could discriminate, demonstrating that the behavioral response had not been extinguished during the 40 day period. When reinforcement was resumed, BTX animals were able to discriminate between cinnamon and strawberry after four test sessions. In addition, their ability to discriminate between these two familiar odors was no different than that of BTX and sham animals tested with two novel odors, baby powder and coffee. These findings suggest that, after recovery from nerve transection, there are alterations in sensory perception and that restoration of odor quality discrimination requires that the animal must again learn to associate individual odor sensations with a behavioral response.   相似文献   
84.
Post-translational modification of proteins by lysine acetylation plays important regulatory roles in living cells. The budding yeast Saccharomyces cerevisiae is a widely used unicellular eukaryotic model organism in biomedical research. S. cerevisiae contains several evolutionary conserved lysine acetyltransferases and deacetylases. However, only a few dozen acetylation sites in S. cerevisiae are known, presenting a major obstacle for further understanding the regulatory roles of acetylation in this organism. Here we use high resolution mass spectrometry to identify about 4000 lysine acetylation sites in S. cerevisiae. Acetylated proteins are implicated in the regulation of diverse cytoplasmic and nuclear processes including chromatin organization, mitochondrial metabolism, and protein synthesis. Bioinformatic analysis of yeast acetylation sites shows that acetylated lysines are significantly more conserved compared with nonacetylated lysines. A large fraction of the conserved acetylation sites are present on proteins involved in cellular metabolism, protein synthesis, and protein folding. Furthermore, quantification of the Rpd3-regulated acetylation sites identified several previously known, as well as new putative substrates of this deacetylase. Rpd3 deficiency increased acetylation of the SAGA (Spt-Ada-Gcn5-Acetyltransferase) complex subunit Sgf73 on K33. This acetylation site is located within a critical regulatory domain in Sgf73 that interacts with Ubp8 and is involved in the activation of the Ubp8-containing histone H2B deubiquitylase complex. Our data provides the first global survey of acetylation in budding yeast, and suggests a wide-ranging regulatory scope of this modification. The provided dataset may serve as an important resource for the functional analysis of lysine acetylation in eukaryotes.Lysine acetylation is a dynamic and reversible post-translational modification. Acetylation of lysines on their ε-amino group is catalyzed by lysine acetyltransferases (KATs1, also known as histone acetyltrasferases (HATs)), and reversed by lysine deacetylases (KDACs, also known as histone deacetylases (HDACs)) (1). The enzymatic machinery involved in lysine acetylation is evolutionary conserved in all forms of life (24). The role of acetylation has been extensively studied in the regulation of gene expression via modification of histones (5). Acetylation also plays important roles in controlling cellular metabolism (610), protein folding (11), and sister chromatid cohesion (12). Furthermore, acetylation has been implicated in regulating the beneficial effects of calorie restriction (13), a low nutrient diet without starvation, and aging. Based on these findings, it is proposed that the functional roles of acetylation in these processes are evolutionary conserved from yeast to mammals.Advancements in mass spectrometry (MS)-based proteomics have greatly facilitated identification of thousands of post-translational modification (PTM) sites in eukaryotic cells (1418). Proteome-wide mapping of PTM sites can provide important leads for analyzing the functional relevance of individual sites and a systems-wide view of the regulatory scope of post-translational modifications. Also, large-scale PTM datasets are an important resource for the in silico analysis of PTMs, which can broaden the understanding of modification site properties and their evolutionary trajectories.The budding yeast Saccharomyces cerevisiae is a commonly used unicellular eukaryotic model organism. Yeast has been used in many pioneering “-omics” studies, including sequencing of the first eukaryotic genome (19), systems-wide genetic interactions analysis (20, 21), MS-based comprehensive mapping of a eukaryotic proteome (22), and proteome-wide analysis of protein-protein interactions (23, 24). In addition, S. cerevisiae has been extensively used to study the molecular mechanisms of acetylation. Many lysine acetyltransferases and deacetylases were discovered in this organism (2, 25), and their orthologs were subsequently identified in higher eukaryotes. Furthermore, the functional roles of many well-studied acetylation sites on histones are conserved from yeast to mammals. Recent data from human and Drosophila cells show that acetylation is present on many highly conserved metabolic enzymes (2628). However, only a few dozen yeast acetylation sites are annotated in the Uniprot database. Given the presence of a well-conserved and elaborate acetylation machinery in yeast, we reasoned that many more acetylation sites exist in this organism that remained to be identified.Here we used high resolution mass spectrometry-based proteomics to investigate the scope of acetylation in S. cerevisiae. We identified about 4000 unique acetylation sites in this important model organism. Bioinformatic analysis of yeast acetylation sites and comparison with previously identified human and Drosophila acetylation sites indicates that many acetylation sites are evolutionary conserved. Furthermore, quantitative analysis of the Rpd3-regulated acetylation sites identified several nuclear proteins that showed increased acetylation in rpd3 knockout cells. Our results provide a systems-wide view of acetylation in budding yeast, and a rich dataset for functional analysis of acetylation sites in this organism.  相似文献   
85.
The medicinal plant, Nothapodytes foetida contains a number of important alkaloids like camptothecin (an anticancer drug molecule) but its concentration is less to meet the existing demand of this important molecule, so in an effort for accessible availability of camptothecin. An endophyte (designated ZP5SE) was isolated from the seed of Nothapodytes foetida and was examined as potential source of anticancer drug lead compound i.e. camptothecin, when grown in Sabouraud liquid culture media under shake flask conditions. The presence of anticancer compound (camptothecin) in this fungus was confirmed by chromatographic and spectroscopic methods in comparison with authentic camptothecin. Isolated endophyte (Neurospora crassa) producing camptothecin may become an easily accessible source for the production of precursor anticancer drug molecule in future at large scale.  相似文献   
86.
87.

Surface plasmon polariton (SPP) waves are the most extensively studied waves among various types of surface waves because they are easy to excite and have been used in many optical applications particularly for plasmonic communication, sensing, and harvesting solar energy. In all these applications, especially on-chip plasmonic communication, scattering can be an important issue to deal with. Therefore, this paper aimed to theoretically inspect the scattering pattern of SPP waves from a perfect electric conductor (PEC) cylindrical scatterer. The cylindrical wave approach is used to solve the scattering problem by a cylindrical object placed below a metallic layer. The scattering is investigated thoroughly by changing the size of the scatterer and its distance from the interface along which the SPP wave is excited. As the size of the scatterer increases, the scattering increases significantly. On the other hand, when the distance of the scatterer from the interface is increased, the scattered field becomes small. Two-dimensional field maps are produced for the incident angle at which SPP is excited. Numerical results are also presented for other incident angles to make a comparison. Furthermore, the forward and backward far-fields are significantly enhanced if the SPP wave is scattered in comparison with when the SPP wave is not present.

  相似文献   
88.
Sixty seven-days-old plants of Ammi majus L. were subjected for 46 d to sand culture at varying concentrations of NaCl, i.e. 0 (control), 40, 80, 120, and 160 mM. Increasing salt concentrations caused a significant reduction in fresh and dry masses of both shoots and roots as well as seed yield. However, the adverse effect of salt was more pronounced on seed yield than biomass production at the vegetative stage. Calculated 50 % reduction in shoot dry mass occurred at 156 mM (ca.15.6 mS cm–1), whereas that in seed yield was at 104 mM (ca.10.4 mS cm–1). As in most glycophytes, Na+ and Cl in both shoots and roots increased, whereas K+ and Ca2+ decreased consistently with the successive increase in salt level of the growth medium. Plants of A. majusmaintained markedly higher K+/Na+ ratios in the shoots than those in the roots, and the ratio remained more than 1 even at the highest external salt level (160 mM). Net photosynthetic (PN) and transpiration (E) rates remained unaffected at increasing NaCl, and thus these attributes had a negative association with salt tolerance of A. majus. Proline content in the shoots increased markedly at the higher concentrations of salt. Essential oil content in the seed decreased consistently with increase in external salt level. Overall, A. majusis a moderately salt tolerant crop whose response to salinity is associated with maintenance of high shoot K+/Na+ ratio and accumulation of proline in shoots, but PN had a negative association with the salt tolerance of this crop.This revised version was published online in March 2005 with corrections to the page numbers.  相似文献   
89.
Phenol is a commonly found organic pollutant in industrial wastewaters. Its ecotoxicological significance is well known and, therefore, the compound is often required to be removed prior to discharge. In this study, plant-bacterial synergism was established in floating treatment wetlands (FTWs) in an attempt to maximize the removal of phenol from contaminated water. A common wetland plant, Typha domingensis, was vegetated on a floating mat and augmented with three phenol-degrading bacterial strains, Acinetobacter lwofii ACRH76, Bacillus cereus LORH97, and Pseudomonas sp. LCRH90, to develop FTWs for the remediation of water contaminated with phenol. All of the strains are known to have phenol-reducing properties, and grow well in FTWs. Results showed that T. domingensis was able to remove a small amount of phenol from the contaminated water; however, bacterial augmentation enhanced the removal potential significantly, i.e., 0.146 g/m2/day vs. 0.166 g/m2/day, respectively. Plant biomass also increased in the presence of bacterial consortia; and inoculated bacteria displayed successful colonization/survival in the rhizosphere, root interior and shoot interior of the plant. Similarly, highest reduction in chemical oxygen demand (COD), biochemical oxygen demand (BOD5), and total organic carbon (TOC) was achieved by the combined application of plants and bacteria. The study demonstrates that the plant-bacterial synergism in a FTW may be a more effective approach for the remediation of phenol-contaminated water.  相似文献   
90.
Moringa oleifera is a multipurpose plant which is now being promoted as a fodder crop. The present study was conducted to induce the tolerance in moringa plants to emerge and grow under saline conditions. For this, moringa seeds were primed with aerated water (hydropriming) and moringa leaf extract (MLE) for 12 and 24 h and studied for its emergence, potential growth behaviour, mineral composition, chlorophyll contents and antioxidant activities in comparison with unprimed seeds to investigate the physiological changes in moringa plants under saline conditions. The seeds were sown in plastic pots filled with acid washed sand at four salinity levels (3, 6, 10, 14 dS m?1) in a completely randomized design with three replications. It was found that salinity >6 dS m?1 reduced the emergence, growth and vigour of moringa plants but hydropriming (12 h) enhanced moringa emergence at 10 dS m?1 followed by MLE priming (12 h). Maximum aboveground biomass and photosynthetic pigments were recorded when the seeds were hydroprimed (12 h) but maximum root length and number of roots were found in MLE primed (12 h) moringa plants. Significant decrease in K+:Na+ ratio with increasing salinity levels resulted in low K+ and Mg2+ uptake and Na+ toxicity in moringa leaves which resulted in reduced chlorophyll contents at 14 dS m?1 but a significant increase in chlorophyll a and b contents and total phenolics were found in hydroprimed seeds (12 h) while the antioxidant activities of superoxide dismutase, peroxidase and catalas were improved by MLE priming (12 h). This study concludes that moringa emergence and growth performance can be improved by hydropriming under saline conditions.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号