首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   167篇
  免费   13篇
  2023年   1篇
  2022年   1篇
  2021年   5篇
  2020年   8篇
  2019年   11篇
  2018年   4篇
  2017年   10篇
  2016年   13篇
  2015年   13篇
  2014年   20篇
  2013年   13篇
  2012年   16篇
  2011年   16篇
  2010年   6篇
  2009年   5篇
  2008年   4篇
  2007年   6篇
  2006年   7篇
  2005年   4篇
  2004年   4篇
  2003年   3篇
  2002年   4篇
  2000年   3篇
  1995年   1篇
  1984年   1篇
  1977年   1篇
排序方式: 共有180条查询结果,搜索用时 46 毫秒
81.
The improved accessibility to data that can be used in human health risk assessment (HHRA) necessitates advanced methods to optimally incorporate them in HHRA analyses. This article investigates the application of data fusion methods to handling multiple sources of data in HHRA and its components. This application can be performed at two levels, first, as an integrative framework that incorporates various pieces of information with knowledge bases to build an improved knowledge about an entity and its behavior, and second, in a more specific manner, to combine multiple values for a state of a certain feature or variable (e.g., toxicity) into a single estimation. This work first reviews data fusion formalisms in terms of architectures and techniques that correspond to each of the two mentioned levels. Then, by handling several data fusion problems related to HHRA components, it illustrates the benefits and challenges in their application.  相似文献   
82.
Herbivore‐induced changes in plants have been widely viewed as defensive responses against further insect attack. However, changes in plants as a consequence of herbivore feeding can elicit various responses in herbivores; these are variable, context dependent, and often unpredictable. In this laboratory study, the responses of Thrips tabaci Lindeman (Thysanoptera: Thripidae) to volatiles emitted by intact and herbivore‐damaged or mechanically damaged cotton seedlings [Gossypium hirsutum L. (Malvaceae)] were investigated in dual‐choice olfactometer assays. Thrips tabaci showed increased attraction to seedlings subject to foliar mechanical damage and those with foliar damage inflicted by conspecifics or Tetranychus urticae Koch (Acari: Tetranychidae), upon which it preys. However, T. tabaci did not discriminate between intact seedlings and those with foliar damage inflicted by Helicoverpa armigera Hübner (Lepidoptera: Noctuidae), two other species of thrips, Frankliniella schultzei Trybom and Frankliniella occidentalis Pergrande (Thysanoptera: Thripidae), or those with root damage inflicted by Tenebrio molitor L. (Coleoptera: Tenebrionidae). Attraction of T. tabaci was also affected by herbivore density on damaged plants. That is, seedlings damaged by higher densities of T. urticae or T. tabaci were more attractive than seedlings damaged by lower densities of the corresponding arthropod. Although attracted to plants damaged by conspecifics or T. urticae, T. tabaci showed greater attraction to seedlings damaged by T. urticae than to seedlings damaged by conspecifics. Results are discussed in the context of the responses of F. schultzei and F. occidentalis to herbivore‐induced cotton seedlings, highlighting the complexity, variability, and unpredictability of the responses of even closely related species of insects to plants under herbivore attack.  相似文献   
83.
Effect of six organic solvents—methanol, ethanol, propanol, dimethyl sulphoxide (DMSO), N,N-dimethyl formamide (DMF), and glycerol on the conformation and interaction of catalase and anticatalase antibodies were studied with the aim of identifying the solvents in which antigen–antibody interactions are strong. The antigen binding activity of the antibodies in the various organic solvents increased in the following order: ethanol < methanol < no organic solvent < propanol < DMSO < DMF < glycerol. The structure of both the antibody and the antigen molecule was affected significantly in 40% concentration of the organic solvents used in this study. Catalase activity was inhibited in DMSO. However, the enzyme was activated in DMF upto about 50% of its concentration.  相似文献   
84.
Skin pigmentation is a highly heterogeneous trait with diverse consequences worldwide. SLC24A5, encoding a potent K+‐dependent Na+/Ca2+ exchanger, is among the known color‐coding genes that participate in melanogenesis by maintaining pH in melanosomes. Deficient SLC24A5 activity results in oculocutaneous albinism (OCA) type 6 in humans. In this study, by utilizing a exome sequencing (ES) approach, we identified two new variants [p. (Gly110Arg) and p. (IIe189Ilefs*1)] of SLC24A5 cosegregating with the OCA phenotype, including nystagmus, strabismus, foveal hypoplasia, albinotic fundus, and vision impairment, in three large consanguineous Pakistani families. Both of these variants failed to rescue the pigmentation in zebrafish slc24a5 morphants, confirming the pathogenic effects of the variants. We also phenotypically characterized a commercially available zebrafish mutant line (slc24a5ko) that harbors a nonsense (p.Tyr208*) allele of slc24a5. Similar to morphants, homozygous slc24a5ko mutants had significantly reduced melanin content and pigmentation. Next, we used these slc24a5ko zebrafish mutants to test the efficacy of nitisinone, a compound known to increase ocular and fur pigmentation in OCA1 (TYR) mutant mice. Treatment of slc24a5ko mutant zebrafish embryos with varying doses of nitisinone did not improve melanin production and pigmentation, suggesting that treatment with nitisinone is unlikely to be therapeutic in OCA6 patients.  相似文献   
85.
By using homozygosity mapping in a consanguineous Pakistani family, we detected linkage of nonsyndromic hearing loss to a 7.6 Mb region on chromosome 3q13.31-q21.1 within the previously reported DFNB42 locus. Subsequent candidate gene sequencing identified a homozygous nonsense mutation (c.1135G>T [p.Glu379X]) in ILDR1 as the cause of hearing impairment. By analyzing additional consanguineous families with homozygosity at this locus, we detected ILDR1 mutations in the affected individuals of 10 more families from Pakistan and Iran. The identified ILDR1 variants include missense, nonsense, frameshift, and splice-site mutations as well as a start codon mutation in the family that originally defined the DFNB42 locus. ILDR1 encodes the evolutionarily conserved immunoglobulin-like domain containing receptor 1, a putative transmembrane receptor of unknown function. In situ hybridization detected expression of Ildr1, the murine ortholog, early in development in the vestibule and in hair cells and supporting cells of the cochlea. Expression in hair cell- and supporting cell-containing neurosensory organs is conserved in the zebrafish, in which the ildr1 ortholog is prominently expressed in the developing ear and neuromasts of the lateral line. These data identify loss-of-function mutations of ILDR1, a gene with a conserved expression pattern pointing to a conserved function in hearing in vertebrates, as underlying nonsyndromic prelingual sensorineural hearing impairment.  相似文献   
86.
Botulinum toxin type A (BTX-A) is a frequently used therapeutic tool to denervate muscles in the treatment of neuromuscular disorders. Although considered safe by the US Food and Drug Administration, BTX-A can produce adverse effects in target and non-target muscles. With an increased use of BTX-A for neuromuscular disorders, the effects of repeat injections of BTX-A on strength, muscle mass and structure need to be known. Therefore, the purpose of this study was to investigate the changes in strength, muscle mass and contractile material in New Zealand White (NZW) rabbits. Twenty NZW rabbits were divided into 4 groups: control and 1, 3 and 6 months of unilateral, repeat injections of BTX-A into the quadriceps femoris. Outcome measures included knee extensor torque, muscle mass and the percentage of contractile material in the quadriceps muscles of the target and non-injected contralateral hindlimbs. Strength in the injected muscles was reduced by 88%, 89% and 95% in the 1, 3 and 6 months BTX-A injected hindlimbs compared to controls. Muscle mass was reduced by 50%, 42% and 31% for the vastus lateralis (VL), rectus femoris (RF) and vastus medialis (VM), respectively, at 1 month, by 68%, 51% and 50% at 3 months and by 76%, 44% and 13% at 6 months. The percentage of contractile material was reduced for the 3 and 6 months animals to 80–64%, respectively, and was replaced primarily by fat. Similar, but less pronounced results were also observed for the quadriceps muscles of the contralateral hindlimbs, suggesting that repeat BTX-A injections cause muscle atrophy and loss of contractile tissue in target muscles and also in non-target muscles that are far removed from the injection site.  相似文献   
87.

Rationale

Emphysema and osteoporosis are epidemiologically associated diseases of cigarette smokers. The causal mechanism(s) linking these illnesses is unknown. We hypothesized autoimmune responses may be involved in both disorders.

Objectives

To discover an antigen-specific autoimmune response associated with both emphysema and osteoporosis among smokers.

Methods

Replicate nonbiased discovery assays indicated that autoimmunity to glucose regulated protein 78 (GRP78), an endoplasmic reticulum chaperone and cell surface signaling receptor, is present in many smokers. Subject assessments included spirometry, chest CT scans, dual x-ray absorptiometry, and immunoblots for anti-GRP78 IgG. Anti-GRP78 autoantibodies were isolated from patient plasma by affinity chromatography, leukocyte functions assessed by flow cytometry, and soluble metabolites and mediators measured by immunoassays.

Measurements and Main Results

Circulating anti-GRP78 IgG autoantibodies were detected in plasma specimens from 86 (32%) of the 265 smoking subjects. Anti-GRP78 autoantibodies were singularly prevalent among subjects with radiographic emphysema (OR 3.1, 95%CI 1.7–5.7, p = 0.003). Anti-GRP78 autoantibodies were also associated with osteoporosis (OR 4.7, 95%CI 1.7–13.3, p = 0.002), and increased circulating bone metabolites (p = 0.006). Among emphysematous subjects, GRP78 protein was an autoantigen of CD4 T-cells, stimulating lymphocyte proliferation (p = 0.0002) and IFN-gamma production (p = 0.03). Patient-derived anti-GRP78 autoantibodies had avidities for osteoclasts and macrophages, and increased macrophage NFkB phosphorylation (p = 0.005) and productions of IL-8, CCL-2, and MMP9 (p = 0.005, 0.007, 0.03, respectively).

Conclusions

Humoral and cellular GRP78 autoimmune responses in smokers have numerous biologically-relevant pro-inflammatory and other deleterious actions, and are associated with emphysema and osteoporosis. These findings may have relevance for the pathogenesis of smoking-associated diseases, and development of biomarker immunoassays and/or novel treatments for these disorders.  相似文献   
88.
Genetic diversity in 403 morphologically distinct landraces of barley (Hordeum vulgare L. subsp. vulgare) originating from seven geographical zones of Asia was studied using simple sequence repeat (SSR) markers from regions of medium to high recombination in the barley genome. The seven polymorphic SSR markers representing each of the chromosomes chosen for the study revealed a high level of allelic diversity among the landraces. Genetic richness was highest in those from India, followed by Pakistan while it was lowest for Uzbekistan and Turkmenistan. Out of the 50 alleles detected, 15 were unique to a geographic region. Genetic diversity was highest for landraces from Pakistan (0.70 ± 0.06) and lowest for those from Uzbekistan (0.18 ± 0.17). Likewise, polymorphic information content (PIC) was highest for Pakistan (0.67 ± 0.06) and lowest for Uzbekistan (0.15 ± 0.17). Diversity among groups was 40% compared to 60% within groups. Principal component analysis clustered the barley landraces into three groups to predict their domestication patterns. In total 51.58% of the variation was explained by the first two principal components of the barley germplasm. Pakistan landraces were clustered separately from those of India, Iran, Nepal and Iraq, whereas those from Turkmenistan and Uzbekistan were clustered together into a separate group.  相似文献   
89.
The underlying mechanisms and effector molecules involved in mediating in utero smoke exposure-induced effects on the developing lung are only beginning to be understood. However, the effects of a newly discovered category of smoke, i.e., thirdhand smoke (THS), on the developing lung are completely unknown. We hypothesized that, in addition to nicotine, other components of THS would also affect lung development adversely. Fetal rat lung explants were exposed to nicotine, 1-(N-methyl-N-nitrosamino)-1-(3-pyridinyl)-4-butanal (NNA), or 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK), the two main tobacco-specific N-nitrosamine constituents of THS, for 24 h. We then determined key markers for alveolar paracrine signaling [epithelial differentiation markers surfactant phospholipid and protein synthesis; mesenchymal differentiation markers peroxisome proliferator-activated receptor γ (PPAR-γ), fibronectin and calponin], the BCL-2-to-Bax ratio (BCL-2/Bax), a marker of apoptosis and the involvement of nicotinic acetylcholine receptors (nAChR)-α3 and -α7 in mediating NNA's and NNK's effects on the developing lung. Similar to the effects of nicotine, exposure of the developing lung to either NNK or NNA resulted in disrupted homeostatic signaling, indicated by the downregulation of PPAR-γ, upregulation of fibronectin and calponin protein levels, decreased BCL-2/Bax, and the accompanying compensatory stimulation of surfactant phospholipid and protein synthesis. Furthermore, nAChR-α3 and -α7 had differential complex roles in mediating these effects. NNK and NNA exposure resulted in breakdown of alveolar epithelial-mesenchymal cross-talk, reflecting lipofibroblast-to-myofibroblast transdifferentiation, suggesting THS constituents as possible novel contributors to in utero smoke exposure-induced pulmonary damage. These data are particularly relevant for designing specific therapeutic strategies, and for formulating public health policies to minimize THS exposure.  相似文献   
90.
Environmental and genomic stresses induce different pathological conditions and one of them is blood cancer. This escalating load of disease with a constant threat to life requires an intensive comprehensive response. For our understanding about the cancer treatment capabilities, novel medicinal platforms should be strived to explore among the existing conventional and molecular approaches that have already been proven to be successful in fighting against genetic diseases. Several DNA therapeutics previously studied are currently in clinical settings. RNA interfering antisense oligonucleotide (AS-ODN) is the most experimentally advanced molecular therapeutic which has the potential to modify the gene activity resulting in the down regulation of particular protein. In this study, we focused on the inhibition of Notch2 function in B-cell chronic lymphocytic leukemia (B-CLL) by AS-ODN (phosphorothioate oligomers) targeted to the initiation codon region of the Notch2 mRNA. We investigated the in vitro ability of four such oligomers to reduce the expression of Notch2 gene in peripheral blood mononuclear cells from B-CLL patients. Our findings implicate that AS-ODNs specifically designed for the region of 314–333 neucleotides (AS1) of Notch2 inhibits its gene expression better than other AS-ODNs designed for other regions and respond in a dose dependent manner. The results of cell proliferation assay for the evaluation of AS1 in gene silencing, infer that the number of cells were reduced to 80% (P < 0.001). Our results implicate that using the AS-ODNs against specific Notch2 nucleotide sequence can be used as future therapeutic agent with the ability of Notch2 down regulation, which is the root problem in the pathogenicity of B-CLL.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号