首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2550篇
  免费   186篇
  国内免费   1篇
  2023年   8篇
  2022年   24篇
  2021年   44篇
  2020年   25篇
  2019年   46篇
  2018年   62篇
  2017年   47篇
  2016年   72篇
  2015年   115篇
  2014年   137篇
  2013年   152篇
  2012年   216篇
  2011年   228篇
  2010年   118篇
  2009年   101篇
  2008年   161篇
  2007年   157篇
  2006年   166篇
  2005年   140篇
  2004年   120篇
  2003年   103篇
  2002年   99篇
  2001年   29篇
  2000年   33篇
  1999年   40篇
  1998年   42篇
  1997年   24篇
  1996年   22篇
  1995年   28篇
  1994年   9篇
  1993年   12篇
  1992年   17篇
  1991年   14篇
  1990年   11篇
  1989年   13篇
  1988年   5篇
  1987年   10篇
  1985年   6篇
  1984年   5篇
  1983年   5篇
  1981年   4篇
  1980年   6篇
  1979年   10篇
  1978年   5篇
  1977年   4篇
  1975年   5篇
  1974年   5篇
  1973年   7篇
  1972年   6篇
  1971年   6篇
排序方式: 共有2737条查询结果,搜索用时 15 毫秒
81.
Inorganic pyrophosphate (PP(i)) produced by cells inhibits mineralization by binding to crystals. Its ubiquitous presence is thought to prevent "soft" tissues from mineralizing, whereas its degradation to P(i) in bones and teeth by tissue-nonspecific alkaline phosphatase (Tnap, Tnsalp, Alpl, Akp2) may facilitate crystal growth. Whereas the crystal binding properties of PP(i) are largely understood, less is known about its effects on osteoblast activity. We have used MC3T3-E1 osteoblast cultures to investigate the effect of PP(i) on osteoblast function and matrix mineralization. Mineralization in the cultures was dose-dependently inhibited by PP(i). This inhibition could be reversed by Tnap, but not if PP(i) was bound to mineral. PP(i) also led to increased levels of osteopontin (Opn) induced via the Erk1/2 and p38 MAPK signaling pathways. Opn regulation by PP(i) was also insensitive to foscarnet (an inhibitor of phosphate uptake) and levamisole (an inhibitor of Tnap enzymatic activity), suggesting that increased Opn levels did not result from changes in phosphate. Exogenous OPN inhibited mineralization, but dephosphorylation by Tnap reversed this effect, suggesting that OPN inhibits mineralization via its negatively charged phosphate residues and that like PP(i), hydrolysis by Tnap reduces its mineral inhibiting potency. Using enzyme kinetic studies, we have shown that PP(i) inhibits Tnap-mediated P(i) release from beta-glycerophosphate (a commonly used source of organic phosphate for culture mineralization studies) through a mixed type of inhibition. In summary, PP(i) prevents mineralization in MC3T3-E1 osteoblast cultures by at least three different mechanisms that include direct binding to growing crystals, induction of Opn expression, and inhibition of Tnap activity.  相似文献   
82.
Atg4C/autophagin-3 is a member of a family of cysteine proteinases proposed to be involved in the processing and delipidation of the mammalian orthologues of yeast Atg8, an essential component of an ubiquitin-like modification system required for execution of autophagy. To date, the in vivo role of the different members of this family of proteinases remains unclear. To gain further insights into the functional relevance of Atg4 orthologues, we have generated mutant mice deficient in Atg4C/autophagin-3. These mice are viable and fertile and do not display any obvious abnormalities, indicating that they are able to develop the autophagic response required during the early neonatal period. However, Atg4C-/--starved mice show a decreased autophagic activity in the diaphragm as assessed by immunoblotting studies and by fluorescence microscopic analysis of samples from Atg4C-/- GFP-LC3 transgenic mice. In addition, animals deficient in Atg4C show an increased susceptibility to develop fibrosarcomas induced by chemical carcinogens. Based on these results, we propose that Atg4C is not essential for autophagy development under normal conditions but is required for a proper autophagic response under stressful conditions such as prolonged starvation. We also propose that this enzyme could play an in vivo role in events associated with tumor progression.  相似文献   
83.
84.
We have studied a possible evolution process permitting a 'primitive' membrane to evolve towards a membrane structure with an outer wall, similar to that of bacteria. We have investigated whether a polysaccharide bearing hydrophobic phytyl or cholesteryl chains coats giant vesicles made of single- or double-chain lipids. Phytyl-pullulan 5b was found to bind to the surface of vesicles made of either single- or double-chain lipids. In contrast, cholesteryl-pullulan 5a only coated the surface of vesicles made of double-chain lipids. These results indicate that there must be a close match between the size and shape of membrane constituents and the hydrophobic molecules to be inserted. This process could, thus, provide a selection mechanism of lipid-membrane constituents during the course of biomembrane evolution. The presence of the above 'hydrophobized' polysaccharides on the surface of different giant vesicles was identified by lectin binding. Both concanavalin A and annexin V were shown by fluorescence microscopy to bind spontaneously to vesicles made of double-chain lipids. Our experiments exemplify that self-organization of amphiphiles into closed vesicles in aqueous solution automatically leads to the coating of vesicles by 'hydrophobized' polysaccharides, which then permit lectin binding. This is a possible mechanism for the evolution of primitive membranes towards 'proto-cells'.  相似文献   
85.
Macroautophagy (hereafter referred to as autophagy) is the major degradative pathway of long-lived proteins and organelles that fulfils key functions in cell survival, tissue remodeling and tumor suppression. Consistently, alterations in autophagy have been involved in a growing list of pathologies including toxic injury, infections, neurodegeneration, myopathies and cancers. Although critical, the molecular mechanisms that control autophagy remain largely unknown. We have recently exploited the disruption of autophagy by environmental carcinogens as a powerful model to uncover the underlying signaling pathways. Our work published in Cancer Research revealed that the sustained activation of the MAPK ERK pathway by the carcinogen Lindane or the MEK1(+) oncogene alters autophagy selectively at the maturation step resulting in the accumulation of large defective autolysosomes. Consistent with our findings, a similar defect is observed with other common xenobiotics such as dichlorodiphenyltrichloroethane and biphenol A that specifically activate ERK. Conversely, Pentachlorophenol that activates both ERK and p38, fails to induce autophagic vacuolation. In addition, evidence is provided that abrogation of p38 by SB203580 is sufficient to interfere with the normal autophagic maturation step. Altogether, these findings underscore the critical role played by MAPK ERK and p38 in the tight control of the autophagy process at the maturation step.  相似文献   
86.
87.
88.
In Vitro Cellular & Developmental Biology - Plant - An efficient, reproducible, and unprecedented protocol of somatic embryogenesis (SE) was developed from leaf tissues of adult plants of...  相似文献   
89.
Plant Cell, Tissue and Organ Culture (PCTOC) - An optimization for a medium sterilization method, capable of substituting autoclaving, was developed using low concentrations of sodium isocyanurate...  相似文献   
90.
Heat shock protein 105 (Hsp105) is a molecular chaperone, and the isoforms Hsp105α and Hsp105β exhibit distinct functions with different subcellular localizations. Hsp105β localizes in the nucleus and induces the expression of the major heat shock protein Hsp70, whereas cytoplasmic Hsp105α is less effective in inducing Hsp70 expression. Hsp105 shuttles between the cytoplasm and the nucleus; the subcellular localization is governed by the relative activities of the nuclear localization signal (NLS) and nuclear export signal (NES). Here, we show that nuclear accumulation of Hsp105α but not Hsp105β is involved in Adriamycin (ADR) sensitivity. Knockdown of Hsp105α induces cell death at low ADR concentration, at which ADR is less effective in inducing cell death in the presence of Hsp105α. Of note, Hsp105 is localized in the nucleus under these conditions, even though Hsp105β is not expressed, indicating that Hsp105α accumulates in the nucleus in response to ADR treatment. The exogenously expressed Hsp105α but not its NLS mutant localizes in the nucleus of ADR-treated cells. In addition, the expression level of the nuclear export protein chromosomal maintenance 1 (CRM1) was decreased by ADR treatment of cells, and CRM1 knockdown caused nuclear accumulation of Hsp105α both in the presence and absence of ADR. These results indicating that Hsp105α accumulates in the nucleus in a manner dependent on the NLS activity via the suppression of nuclear export. Our findings suggest a role of nuclear Hsp105α in the sensitivity against DNA-damaging agents in tumor cells.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号