首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   210篇
  免费   14篇
  2023年   2篇
  2022年   4篇
  2021年   7篇
  2020年   4篇
  2019年   2篇
  2018年   10篇
  2017年   1篇
  2016年   5篇
  2015年   13篇
  2014年   9篇
  2013年   12篇
  2012年   20篇
  2011年   13篇
  2010年   12篇
  2009年   7篇
  2008年   14篇
  2007年   11篇
  2006年   11篇
  2005年   4篇
  2004年   4篇
  2003年   6篇
  2002年   8篇
  2001年   3篇
  2000年   9篇
  1999年   5篇
  1998年   3篇
  1997年   2篇
  1996年   3篇
  1995年   3篇
  1993年   1篇
  1990年   3篇
  1989年   2篇
  1988年   1篇
  1987年   2篇
  1986年   1篇
  1985年   3篇
  1984年   2篇
  1973年   1篇
  1972年   1篇
排序方式: 共有224条查询结果,搜索用时 406 毫秒
11.
Glutamate is an excitotoxin responsible for causing neuronal damage associated with mitochondria dysfunction. We have analyzed the relationship between the mitochondrial respiratory rate, the membrane potential (delta psi) and the activity of mitochondrial complexes in retinal cells in culture, used as neuronal models. Glutamate (10 microM-10 mM) dose-dependently decreased the O2 consumption and the membrane potential. A linear correlation was found between these parameters, suggesting that the mitochondrial respiratory function was affected. Exposure to glutamate (100 microM) for 10 min, in the absence of Mg2+, inhibited the activity of complex I (26.3%), complexes II/III (22.2%) and complex IV (26.7%). MK-801 ((+)-5-methyl-10,11-dihydro-5H-dibenzo[a,d]-cyclohepten-5,10-imine hydrogen maleate), a non-competitive antagonist of the NMDA (N-methyl-D-aspartate) receptors, completely reversed the effect exerted by 100 microM glutamate at the level of complexes I, II/III and IV. These results suggest that NMDA receptor-mediated inhibition of mitochondrial respiratory chain complexes may be responsible for the alteration in the respiratory rate of chick retinal cells submitted to glutamate.  相似文献   
12.
Azospirillum species are plant-associated diazotrophs of the alpha subclass of Proteobacteria. The genomes of five of the six Azospirillum species were analyzed by pulsed-field gel electrophoresis. All strains possessed several megareplicons, some probably linear, and 16S ribosomal DNA hybridization indicated multiple chromosomes in genomes ranging in size from 4.8 to 9.7 Mbp. The nifHDK operon was identified in the largest replicon.  相似文献   
13.
Neurosteroids can modulate the activity of the GABAA receptors, and thus affect anxiety-like behaviors. The non-benzodiazepine anxiolytic compound etifoxine has been shown to increase neurosteroid concentrations in brain tissue but the mode of action of etifoxine on neurosteroid formation has not yet been elucidated. In the present study, we have thus investigated the effect and the mechanism of action of etifoxine on neurosteroid biosynthesis using the frog hypothalamus as an experimental model. Exposure of frog hypothalamic explants to graded concentrations of etifoxine produced a dose-dependent increase in the biosynthesis of 17-hydroxypregnenolone, dehydroepiandrosterone, progesterone and tetrahydroprogesterone, associated with a decrease in the production of dihydroprogesterone. Time-course experiments revealed that a 15-min incubation of hypothalamic explants with etifoxine was sufficient to induce a robust increase in neurosteroid synthesis, suggesting that etifoxine activates steroidogenic enzymes at a post-translational level. Etifoxine-evoked neurosteroid biosynthesis was not affected by the central-type benzodiazepine (CBR) receptor antagonist flumazenil, the translocator protein (TSPO) antagonist PK11195 or the GABAA receptor antagonist bicuculline. In addition, the stimulatory effects of etifoxine and the triakontatetraneuropeptide TTN, a TSPO agonist, were additive, indicating that these two compounds act through distinct mechanisms. Etifoxine also induced a rapid stimulation of neurosteroid biosynthesis from frog hypothalamus homogenates, a preparation in which membrane receptor signalling is disrupted. In conclusion, the present study demonstrates that etifoxine stimulates neurosteroid production through a membrane receptor-independent mechanism.  相似文献   
14.
We identified Tf2, the first β-scorpion toxin from the venom of the Brazilian scorpion Tityus fasciolatus. Tf2 is identical to Tb2-II found in Tityus bahiensis. We found that Tf2 selectively activates human (h)Nav1.3, a neuronal voltage-gated sodium (Nav) subtype implicated in epilepsy and nociception. Tf2 shifts hNav1.3 activation voltage to more negative values, thereby opening the channel at resting membrane potentials. Seven other tested mammalian Nav channels (Nav1.1-1.2; Nav1.4-1.8) expressed in Xenopus oocytes are insensitive upon application of 1 μM Tf2. Therefore, the identification of Tf2 represents a unique addition to the repertoire of animal toxins that can be used to investigate Nav channel function.  相似文献   
15.
Cortical function has been suggested to be highly compromised by repeated heroin self-administration. We have previously shown that street heroin induces apoptosis in neuronal-like PC12 cells. Thus, we analysed the apoptotic pathways involved in street heroin neurotoxicity using primary cultures of rat cortical neurons. Our street heroin sample was shown to be mainly composed by heroin, 6-monoacetylmorphine and morphine. Exposure of cortical neurons to street heroin induced a slight decrease in metabolic viability, without loss of neuronal integrity. Early activation of caspases involved in the mitochondrial apoptotic pathway was observed, culminating in caspase 3 activation, Poly-ADP Ribose Polymerase (PARP) cleavage and DNA fragmentation. Apoptotic morphology was completely prevented by the non-selective caspase inhibitor z-VAD-fmk, indicating an important role for caspases in neurodegeneration induced by street heroin. Ionotropic glutamate receptors, opioid receptors and oxidative stress were not involved in caspase 3 activation. Interestingly, street heroin cytotoxicity was shown to be independent of a functional mitochondrial respiratory chain, as determined using NT-2 rho(0) cells. Nonetheless, in street heroin-treated cortical neurons, cytochrome c was released, accompanied by a decrease in mitochondrial potential and Bcl-2/Bax. Pure heroin hydrochloride similarly decreased metabolic viability but only slightly activated caspase 3. Altogether, our data suggest an important role for mitochondria in mediating street heroin neurotoxic effects.  相似文献   
16.
Many species in Mediterranean-type ecosystems regenerate after fire by seed germination from soil seed banks. Seed bank dynamics of two of those obligate seeders, Cistus monspeliensis and Rosmarinus officinalis, were investigated in relation to stand age since fire in southwestern Portugal. Soil seed density, annual seed input, annual seed losses through germination and seed persistence were compared between species at stands differing in age since fire (5, 10 and 35 years). Soil seed density and seed input increased over the first decade after fire and were lowest at 35-year-old stands for C. monspeliensis. In R. officinalis, few seeds were produced and found in the soil at early stages, and maximum seed input and soil seed density were attained at 35-year-old stands. Soil seed density was mostly driven by seed production in both species, which is largely dependent on plant traits and population dynamics related to fire. Overall, stand age since fire had a negligible effect on seed germination, seed persistence and viability. Ten to 39% of buried seeds were not recovered after 1 year, and viability of seeds recovered was 97–100% for C. monspeliensis and only 0–3% for R. officinalis. Variation in plant traits within the seeder syndrome was evidenced by this study. R. officinalis evidenced lower seed persistence, lower proportion of viable seed produced and lower density of viable soil seed than C. monspeliensis at any stage after fire. R. officinalis is expected to depend largely on previous year seed production for population replacement after fire.  相似文献   
17.
18.
Shao L  Kner P  Rego EH  Gustafsson MG 《Nature methods》2011,8(12):1044-1046
Three-dimensional (3D) structured-illumination microscopy (SIM) can double the lateral and axial resolution of a wide-field fluorescence microscope but has been too slow for live imaging. Here we apply 3D SIM to living samples and record whole cells at up to 5 s per volume for >50 time points with 120-nm lateral and 360-nm axial resolution. We demonstrate the technique by imaging microtubules in S2 cells and mitochondria in HeLa cells.  相似文献   
19.
Promyelocytic leukemia-retinoic acid receptor alpha (PML-RARα) expression in acute promyelocytic leukemia (APL) impairs transforming growth factor beta (TGFβ) signaling, leading to cell growth advantage. Halofuginone (HF), a low-molecular-weight alkaloid that modulates TGFβ signaling, was used to treat APL cell lines and non-obese diabetic/severe combined immunodeficiency (NOD/SCID) mice subjected to transplantation with leukemic cells from human chorionic gonadotrophin-PML-RARα transgenic mice (TG). Cell cycle analysis using incorporated bromodeoxyuridine and 7-amino-actinomycin D showed that, in NB4 and NB4-R2 APL cell lines, HF inhibited cellular proliferation (P<0.001) and induced apoptosis (P = 0.002) after a 24-hour incubation. Addition of TGFβ revealed that NB4 cells were resistant to its growth-suppressive effects and that HF induced these effects in the presence or absence of the cytokine. Cell growth inhibition was associated with up-regulation of TGFβ target genes involved in cell cycle regulation (TGFB, TGFBRI, SMAD3, p15, and p21) and down-regulation of MYC. Additionally, TGFβ protein levels were decreased in leukemic TG animals and HF in vivo could restore TGFβ values to normal. To test the in vivo anti-leukemic activity of HF, we transplanted NOD/SCID mice with TG leukemic cells and treated them with HF for 21 days. HF induced partial hematological remission in the peripheral blood, bone marrow, and spleen. Together, these results suggest that HF has anti-proliferative and anti-leukemic effects by reversing the TGFβ blockade in APL. Since loss of the TGFβ response in leukemic cells may be an important second oncogenic hit, modulation of TGFβ signaling may be of therapeutic interest.  相似文献   
20.
In this study we investigated the effect of insulin on neuronal viability and antioxidant defense mechanisms upon ascorbate/Fe2+-induced oxidative stress, using cultured cortical neurons. Insulin (0.1 and 10 microM) prevented the decrease in neuronal viability mediated by oxidative stress, decreasing both necrotic and apoptotic cell death. Moreover, insulin inhibited ascorbate/Fe2+-mediated lipid and protein oxidation, thus decreasing neuronal oxidative stress. Increased 4-hydroxynonenal (4-HNE) adducts on GLUT3 glucose transporters upon exposure to ascorbate/Fe2+ were also prevented by insulin, suggesting that this peptide can interfere with glucose metabolism. We further analyzed the influence of insulin on antioxidant defense mechanisms in the cortical neurons. Oxidative stress-induced decreases in intracellular uric acid and GSH/GSSG levels were largely prevented upon treatment with insulin. Inhibition of phosphatidylinositol-3-kinase (PI-3K) or mitogen-induced extracellular kinase (MEK) reversed the effect of insulin on uric acid and GSH/GSSG, suggesting the activation of insulin-mediated signaling pathways. Moreover, insulin stimulated glutathione reductase (GRed) and inhibited glutathione peroxidase (GPx) activities under oxidative stress conditions, further supporting that insulin neuroprotection was related to the modulation of the glutathione redox cycle. Thus, insulin may be useful in preventing oxidative stress-mediated injury that occurs in several neurodegenerative disorders.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号