首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1217篇
  免费   114篇
  1331篇
  2021年   14篇
  2020年   8篇
  2019年   10篇
  2018年   20篇
  2017年   10篇
  2016年   15篇
  2015年   36篇
  2014年   33篇
  2013年   51篇
  2012年   92篇
  2011年   56篇
  2010年   42篇
  2009年   38篇
  2008年   53篇
  2007年   37篇
  2006年   41篇
  2005年   38篇
  2004年   39篇
  2003年   43篇
  2002年   28篇
  2001年   21篇
  2000年   26篇
  1999年   19篇
  1998年   17篇
  1997年   17篇
  1996年   16篇
  1995年   13篇
  1994年   9篇
  1993年   15篇
  1992年   16篇
  1991年   20篇
  1990年   16篇
  1989年   18篇
  1988年   16篇
  1987年   12篇
  1986年   17篇
  1985年   16篇
  1984年   23篇
  1983年   10篇
  1982年   16篇
  1981年   16篇
  1980年   11篇
  1979年   13篇
  1978年   13篇
  1976年   9篇
  1974年   9篇
  1973年   9篇
  1971年   9篇
  1968年   7篇
  1940年   8篇
排序方式: 共有1331条查询结果,搜索用时 9 毫秒
81.
The first barrier to infection encountered by foliar pathogens is the host cuticle. To traverse this obstacle, many fungi produce specialized infection cells called appressoria. MST12 is essential for appressorium-mediated penetration and infectious growth by the rice pathogen Magnaporthe grisea. In this study, we have characterized in detail the penetration defects of an mst12 deletion mutant. Appressoria formed by the mst12 mutant developed normal turgor pressure and ultrastructure but failed to form penetration pegs either on cellophane membranes or on plant epidermal cells. Deletion and site-directed mutagenesis analyses indicated that both the homeodomain and zinc finger domains, but not the middle region, of MST12 are essential for appressorial penetration and plant infection. The mst12 mutant appeared to be defective in microtubule reorganization associated with penetration peg formation. In mature appressoria, the mutant lacked vertical microtubules observed in the wild type. The mst12 mutant also failed to elicit localized host defence responses, including papilla formation and autofluorescence. Our data indicate that generation of appressorium turgor pressure and formation of the penetration peg are two independent processes. MST12 may play important roles in regulating penetration peg formation and directing the physical forces exerted by the appressorium turgor in mature appressoria.  相似文献   
82.
83.
To disperse their spores to new sites, filamentous fungi and bacteria need to erect aerial filaments, which develop into fruiting bodies and spore-bearing structures. The first challenge to aerial development is breaking surface tension at an aqueous-air interface, and in both groups of microorganisms, surface-active proteins take part in the initiation of aerial morphogenesis. Comparative analysis of fungi and bacteria is providing new insights into the means by which aerial filamentation is accomplished.  相似文献   
84.
The causal agent of rice blast disease, the ascomycete fungus Magnaporthe grisea, infects rice (Oryza sativa) plants by means of specialized infection structures called appressoria, which are formed on the leaf surface and mechanically rupture the cuticle. We have identified a gene, Magnaporthe metallothionein 1 (MMT1), which is highly expressed throughout growth and development by M. grisea and encodes an unusual 22-amino acid metallothionein-like protein containing only six Cys residues. The MMT1-encoded protein shows a very high affinity for zinc and can act as a powerful antioxidant. Targeted gene disruption of MMT1 produced mutants that show accelerated hyphal growth rates and poor sporulation but had no effect on metal tolerance. Mmt1 mutants are incapable of causing plant disease because of an inability to bring about appressorium-mediated cuticle penetration. Mmt1 appears to be distributed in the inner side of the cell wall of the fungus. These findings indicate that Mmt1-like metallothioneins may play a novel role in fungal cell wall biochemistry that is required for fungal virulence.  相似文献   
85.
LDL aggregates when exposed to even moderate fluid mechanical stresses in the laboratory, yet its half-life in the circulation is 2-3 days, implying that little aggregation occurs. LDL may be protected from aggregation in vivo by components of plasma, or by a qualitative difference in flows. Previous studies have shown that HDL and albumin inhibit the aggregation induced by vortexing. Using a more reproducible method of inducing aggregation and assessing aggregation both spectrophotometrically and by sedimentation techniques, we showed that at physiological concentrations, albumin is the more effective inhibitor, and that aggregation is substantially but not completely inhibited in plasma. Heat denatured and fatty-acid-stripped albumin were more effective inhibitors than normal albumin, supporting the idea that hydrophobic interactions are involved. Aggregation of LDL in a model reproducing several aspects of flow in the circulation was 200-fold slower, but was still inhibited by HDL and albumin, suggesting similar mechanisms are involved. Within the sensitivity of our technique, LDL aggregation did not occur in plasma exposed to these flows. Thus, as a result of the characteristics of blood flow and the inhibitory effects of plasma components, particularly albumin, LDL aggregation is unlikely to occur within the circulation.  相似文献   
86.
Human coronavirus HCoV-229E uses human aminopeptidase N (hAPN) as its receptor (C. L. Yeager et al., Nature 357:420-422, 1992). To identify the receptor-binding domain of the viral spike glycoprotein (S), we expressed soluble truncated histidine-tagged S glycoproteins by using baculovirus expression vectors. Truncated S proteins purified by nickel affinity chromatography were shown to be glycosylated and to react with polyclonal anti-HCoV-229E antibodies and monoclonal antibodies to the viral S protein. A truncated protein (S(547)) that contains the N-terminal 547 amino acids bound to 3T3 mouse cells that express hAPN but not to mouse 3T3 cells transfected with empty vector. Binding of S(547) to hAPN was blocked by an anti-hAPN monoclonal antibody that inhibits binding of virus to hAPN and blocks virus infection of human cells and was also blocked by polyclonal anti-HCoV-229E antibody. S proteins that contain the N-terminal 268 or 417 amino acids did not bind to hAPN-3T3 cells. Antibody to the region from amino acid 417 to the C terminus of S blocked binding of S(547) to hAPN-3T3 cells. Thus, the data suggest that the domain of the spike protein between amino acids 417 and 547 is required for the binding of HCoV-229E to its hAPN receptor.  相似文献   
87.
Truncated human coronavirus HCoV-229E spike glycoproteins containing amino acids 407 to 547 bound to purified, soluble virus receptor, human aminopeptidase N (hAPN). Soluble hAPN neutralized the infectivity of HCoV-229E virions at 37 degrees C, but not 4 degrees C. Binding of hAPN may therefore trigger conformational changes in the viral spike protein at 37 degrees C that facilitate virus entry.  相似文献   
88.
Using bioinformatics approaches, 34 potential multidrug resistance (MDR) transporter sequences representing 4 different transporter families were identified in the unannotated Enterococcus faecalis database (TIGR). A functional genomics campaign generating single-gene insertional disruptions revealed several genes whose absence confers significant hypersensitivities to known antimicrobials. We constructed specific strains, disrupted in a variety of previously unpublished, putative MDR transporter genes, as tools to improve the success of whole-cell antimicrobial screening and discovery. Each of the potential transporters was inactivated at the gene level and then phenotypically characterized, both with single disruption mutants and with 2-gene mutants built upon a delta norA deleted strain background.  相似文献   
89.
90.
The chick chorioallantoic membrane (CAM) is a valuable model for evaluating angiogenesis and vasculogenesis. Our purpose was to characterize the formation of the CAM vasculature, in particular the capillary plexus, between days five and six after fertilization and to examine the mode of action of cytochalasin D and suramin on vascular development during this interval. The CAM increased 20-fold in size between days five and six, during which time the capillary plexus forms by both migration of mesodermal blood vessels toward the ectoderm and by the formation of new vessels from angioblasts near the ectoderm. Between days five and six, the CAM becomes thinner, and the density of the mesodermal cells decreases. To determine the mode of action of anti-angiogenic drugs on the day five to day six CAM, various concentrations of cytochalasin D or suramin were added directly to day five CAMs, and their effects were evaluated on day six. Both drugs significantly inhibited CAM growth, altered branching patterns of the major vessels, decreased area of the major vessels, and inhibited the formation of the capillary plexus by inhibiting both vasculogenesis and the migration of mesodermal blood vessels to the ectoderm. Cytochalasin D also inhibited compartmentalization of the plexus. Cytochalasin D and suramin were inhibitory at similar doses. This study provides new information on early CAM development, establishes the mode of action and dose dependency of cytochalasin D and suramin on day five to day six CAMs, and demonstrates that the day five to day six CAM provides a useful assay to examine the effect of anti-angiogenic drugs on blood vessel development, including capillary plexus formation.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号