首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2713篇
  免费   183篇
  国内免费   1篇
  2023年   14篇
  2022年   26篇
  2021年   38篇
  2020年   39篇
  2019年   36篇
  2018年   51篇
  2017年   53篇
  2016年   95篇
  2015年   140篇
  2014年   174篇
  2013年   204篇
  2012年   255篇
  2011年   227篇
  2010年   129篇
  2009年   108篇
  2008年   160篇
  2007年   153篇
  2006年   141篇
  2005年   140篇
  2004年   132篇
  2003年   125篇
  2002年   86篇
  2001年   24篇
  2000年   11篇
  1999年   29篇
  1998年   31篇
  1997年   28篇
  1996年   29篇
  1995年   14篇
  1994年   27篇
  1993年   21篇
  1992年   25篇
  1991年   3篇
  1990年   11篇
  1989年   8篇
  1988年   13篇
  1987年   7篇
  1986年   6篇
  1985年   3篇
  1984年   9篇
  1982年   6篇
  1981年   7篇
  1980年   3篇
  1979年   6篇
  1978年   3篇
  1977年   7篇
  1976年   3篇
  1974年   3篇
  1973年   5篇
  1972年   3篇
排序方式: 共有2897条查询结果,搜索用时 15 毫秒
61.
Kiwifruit (Actinidia spp.) is a recently domesticated fruit crop with several novel-coloured cultivars being developed. Achieving uniform fruit flesh pigmentation in red genotypes is challenging. To investigate the cause of colour variation between fruits, we focused on a red-fleshed Actinidia chinensis var. chinensis genotype. It was hypothesized that carbohydrate supply could be responsible for this variation. Early in fruit development, we imposed high or low (carbon starvation) carbohydrate supplies treatments; carbohydrate import or redistribution was controlled by applying a girdle at the shoot base. Carbon starvation affected fruit development as well as anthocyanin and carbohydrate metabolite concentrations, including the signalling molecule trehalose 6-phosphate. RNA-Seq analysis showed down-regulation of both gene-encoding enzymes in the anthocyanin and carbohydrate biosynthetic pathways. The catalytic trehalose 6-phosphate synthase gene TPS1.1a was down-regulated, whereas putative regulatory TPS7 and TPS11 were strongly up-regulated. Unexpectedly, under carbon starvation MYB10, the anthocyanin pathway regulatory activator was slightly up-regulated, whereas MYB27 was also up-regulated and acts as a repressor. To link these two metabolic pathways, we propose a model where trehalose 6-phosphate and the active repressor MYB27 are involved in sensing the carbon starvation status. This signals the plant to save resources and reduce the production of anthocyanin in fruits.  相似文献   
62.
63.
We report 24 records of giant armadillo roadkill on Brazilian highways in the Cerrado, Pantanal and Amazon biomes illustrating that highways are a threat to this species. However, we also documented the species using underpasses, demonstrating that these structures could help to reduce the risk of roadkill for giant armadillos.  相似文献   
64.

Background

The secretory activity of Sertoli cells (SC) is dependent on ion channel functions and protein synthesis and is critical to ongoing spermatogenesis. The aim of this study was to investigate the mechanism of action associated with a non-metabolizable amino acid [14C]-MeAIB (α-(methyl-amino)isobutyric acid) accumulation stimulated by T4 and the role of the integrin receptor in this event, and also to clarify whether the T4 effect on MeAIB accumulation and on Ca2+ influx culminates in cell secretion.

Methods

We have studied the rapid and plasma membrane initiated effects of T4 by using 45Ca2+ uptake and [45C]-MeAIB accumulation assays, respectively. Thymidine incorporation into DNA was used to monitor nuclear activity and quinacrine to analyze the secretory activity on SC.

Results

The stimulation of MeAIB accumulation by T4 appears to be mediated by the integrin receptor in the plasma membrane since tetrac and RGD peptide were able to nullify the effect of this hormone. In addition, T4 increases extracellular Ca2+ uptake and Ca2+ from intracellular stocks to enhance nuclear activity, but this genomic action seems not to influence SC secretion mediated by T4. Also, the cytoskeleton and ClC-3 chloride channel contribute to the membrane-associated responses of SC.

Conclusions

T4 integrin receptor activation ultimately determines the plasma membrane responses on amino acid transport in SC, but it is not involved in calcium influx, cell secretion or the nuclear effect of the hormone.

General significance

The integrin receptor activation by T4 may take a role in plasma membrane processes involved in the male reproductive system.  相似文献   
65.
66.
Gene synthesis attempts to assemble user-defined DNA sequences with base-level precision. Verifying the sequences of construction intermediates and the final product of a gene synthesis project is a critical part of the workflow, yet one that has received the least attention. Sequence validation is equally important for other kinds of curated clone collections. Ensuring that the physical sequence of a clone matches its published sequence is a common quality control step performed at least once over the course of a research project. GenoREAD is a web-based application that breaks the sequence verification process into two steps: the assembly of sequencing reads and the alignment of the resulting contig with a reference sequence. GenoREAD can determine if a clone matches its reference sequence. Its sophisticated reporting features help identify and troubleshoot problems that arise during the sequence verification process. GenoREAD has been experimentally validated on thousands of gene-sized constructs from an ORFeome project, and on longer sequences including whole plasmids and synthetic chromosomes. Comparing GenoREAD results with those from manual analysis of the sequencing data demonstrates that GenoREAD tends to be conservative in its diagnostic. GenoREAD is available at www.genoread.org.  相似文献   
67.
ADAM9 (A Disintegrin And Metalloproteinase 9) is a member of the ADAM protein family which contains a disintegrin domain. This protein family plays key roles in many physiological processes, including fertilization, migration, and cell survival. The ADAM proteins have also been implicated in various diseases, including cancer. Specifically, ADAM9 has been suggested to be involved in metastasis. To address this question, we generated ADAM9 knockdown clones of MDA-MB-231 breast tumor cells using silencing RNAs that were tested for cell adhesion, proliferation, migration and invasion assays. In RNAi-mediated ADAM9 silenced MDA-MB-231 cells, the expression of ADAM9 was lower from the third to the sixth day after silencing and inhibited tumor cell invasion in matrigel by approximately 72% when compared to control cells, without affecting cell adhesion, proliferation or migration. In conclusion, the generation of MDA-MB-231 knockdown clones lacking ADAM9 expression inhibited tumor cell invasion in vitro, suggesting that ADAM9 is an important molecule in the processes of invasion and metastasis.  相似文献   
68.
69.
70.
STARCH SYNTHASE4 (SS4) is required for proper starch granule initiation in Arabidopsis (Arabidopsis thaliana), although SS3 can partially replace its function. Unlike other starch-deficient mutants, ss4 and ss3/ss4 mutants grow poorly even under long-day conditions. They have less chlorophyll and carotenoids than the wild type and lower maximal rates of photosynthesis. There is evidence of photooxidative damage of the photosynthetic apparatus in the mutants from chlorophyll a fluorescence parameters and their high levels of malondialdehyde. Metabolite profiling revealed that ss3/ss4 accumulates over 170 times more ADP-glucose (Glc) than wild-type plants. Restricting ADP-Glc synthesis, by introducing mutations in the plastidial phosphoglucomutase (pgm1) or the small subunit of ADP-Glc pyrophosphorylase (aps1), largely restored photosynthetic capacity and growth in pgm1/ss3/ss4 and aps1/ss3/ss4 triple mutants. It is proposed that the accumulation of ADP-Glc in the ss3/ss4 mutant sequesters a large part of the plastidial pools of adenine nucleotides, which limits photophosphorylation, leading to photooxidative stress, causing the chlorotic and stunted growth phenotypes of the plants.The metabolism of starch plays an essential role in the physiology of plants. Starch breakdown provides the plant with carbon skeletons and energy when the photosynthetic machinery is inactive (transitory starch) or in the processes of germination and sprouting (storage starch). Deficiencies in the accumulation of transitory starch in Arabidopsis (Arabidopsis thaliana) have been described previously, specifically in mutants affected in the plastidial phosphoglucomutase (PGM1) or the small subunit (APS1) of the ADP-Glc pyrophosphorylase (AGPase). While they are described as “starchless,” they actually contain small amounts of starch (1%–2% of the wild-type levels; Streb et al., 2009) and share similar phenotypic alterations, such as growth retardation when cultivated under a short-day photoregime and increased levels of soluble sugars during the light phase and reduced levels during the night (Caspar et al., 1985; Lin et al., 1988b; Schulze et al., 1991). Carbon partitioning is altered in these plants. As photosynthate cannot be accumulated as starch, it is diverted via hexose phosphates in the cytosol to the synthesis of Suc, which accumulates together with the hexose sugars, Glc and Fru (Caspar et al., 1985). In Arabidopsis, there are five starch synthase isoforms: one granule-bound starch synthase and four soluble starch synthases: SS1, SS2, SS3, and SS4. We have described previously an Arabidopsis mutant plant lacking SS3 and SS4 that is also severely affected in the accumulation of starch (Szydlowski et al., 2009). SS4 is involved in the initiation of the starch granule and controls the number of granules per chloroplast (Roldán et al., 2007). The elimination of SS3 in an ss4 background leads to an absence of starch in most of the chloroplasts, despite the fact that SS1 and SS2 are still present and total starch synthase activity is only reduced by 35% (Szydlowski et al., 2009). However, a very small proportion of chloroplasts of this mutant plant contain a single huge starch granule, which is also a characteristic of chloroplasts in the ss4 single mutant (D’Hulst and Mérida, 2012). Thus, like aps1 and pgm1, ss3/ss4 plants contain only small amounts of starch. However, unlike aps1 or pgm1 plants, most of the cells of this mutant have empty chloroplasts, without starch (Szydlowski et al., 2009).In this work, we have analyzed the phenotypic effects of the impaired starch accumulation of ss3/ss4 plants. We show that this mutant displays phenotypic changes that are not found in other mutants with very low levels of starch, such as aps1 or pgm1 plants. We provide evidence that extremely high levels of ADP-Glc accumulate in the ss3/ss4 plants. Using reverse genetics to block the pathway of starch synthesis upstream of the starch synthases reduced the level of ADP-Glc in ss3/ss4 plants and reverted the other phenotypic traits. This suggests that ADP-Glc accumulation is the causal factor behind the chlorotic and stunted growth phenotypes of the ss3/ss4 mutant.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号