首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   509篇
  免费   73篇
  2022年   3篇
  2019年   4篇
  2017年   4篇
  2016年   11篇
  2015年   8篇
  2014年   17篇
  2013年   30篇
  2012年   18篇
  2011年   14篇
  2010年   12篇
  2009年   8篇
  2008年   21篇
  2007年   22篇
  2006年   12篇
  2005年   18篇
  2004年   18篇
  2003年   15篇
  2002年   12篇
  2001年   15篇
  2000年   26篇
  1999年   9篇
  1998年   7篇
  1997年   9篇
  1996年   6篇
  1994年   6篇
  1993年   5篇
  1992年   13篇
  1991年   8篇
  1990年   11篇
  1989年   15篇
  1988年   16篇
  1987年   6篇
  1986年   15篇
  1985年   15篇
  1984年   8篇
  1983年   8篇
  1981年   10篇
  1980年   11篇
  1979年   5篇
  1978年   9篇
  1977年   9篇
  1976年   6篇
  1975年   7篇
  1974年   8篇
  1973年   9篇
  1972年   10篇
  1970年   3篇
  1959年   7篇
  1954年   5篇
  1948年   3篇
排序方式: 共有582条查询结果,搜索用时 31 毫秒
71.
72.
73.
Cardiovascular disease is a leading cause of death worldwide. Loss of function or death of cardiomyocytes is a major contributing factor to these diseases. Cell death in conditions such as heart failure and myocardial infarction is associated with apoptosis. Apoptotic pathways have been well studied in non-myocytes and it is thought that similar pathways exist in cardiomyocytes. These pathways include death initiated by ligation of membrane-bound death receptors, release of pro-apoptotic factors from mitochondria or stress at the endoplasmic reticulum. The key regulators of apoptosis include inhibitors of caspases (IAPs), the Bcl-2 family of proteins, growth factors, stress proteins, calcium and oxidants. The highly organized and predictive nature of apoptotic signaling means it is amenable to manipulation. A thorough understanding of the apoptotic process would facilitate intervention at the most suitable points, alleviating myocardium decline and dysfunction. This review summarizes the mechanisms underlying apoptosis and the mediators/regulators involved in these signaling pathways. We also discuss how the potential therapeutic value of these molecules could be harnessed.  相似文献   
74.
75.
We develop and apply a simple model for animal communication in which signalers can use a nontrivial frequency of deception without causing listeners to completely lose belief. This common feature of animal communication has been difficult to explain as a stable adaptive outcome of the options and payoffs intrinsic to signaling interactions. Our theory is based on two realistic assumptions. (1) Signals are "overheard" by several listeners or listener types with different payoffs. The signaler may then benefit from using incomplete honesty to elicit different responses from different listener types, such as attracting potential mates while simultaneously deterring competitors. (2) Signaler and listener strategies change dynamically in response to current payoffs for different behaviors. The dynamic equations can be interpreted as describing learning and behavior change by individuals or evolution across generations. We explain how our dynamic model differs from other solution concepts from classical and evolutionary game theory and how it relates to general models for frequency-dependent phenotype dynamics. We illustrate the theory with several applications where deceptive signaling occurs readily in our framework, including bluffing competitors for potential mates or territories. We suggest future theoretical directions to make the models more general and propose some possible experimental tests.  相似文献   
76.
Evidence suggests that amino terminal extensions of CCK-8 affect the carboxyl terminal bioactive region of CCK. Cat CCK-58 was purified by low pressure reverse phase and ion-exchange chromatography steps and several reverse phase HPLC steps. The purified peptide and its tryptic fragments were characterized by mass spectral analysis and microsequence analysis. The structure of cat CCK-58 is: AVQKVDGEPRAHLGALLARYIQQARKAPSGRMSVIKNLQSLDPSHRISDRDY(SO3) MGWMDF-amide. Cat and dog CCK-58 are identical except for position 40 which is serine in cat and asparagine in dog. Radioimmunoassay detected cat CCK-58 about 1/10th as well as dog CCK-58, indicating a marked effect on C-terminal immunoreactivity. Cat CCK-58 with a serine at position 40, the same residue found in pig, mouse, cow and rabbit CCK-58, can be used as a unique bioprobe for defining how amino terminal amino acids influence the structure and bioactivity of the carboxyl terminal region of CCK.  相似文献   
77.
78.
79.
Immunosuppression attributed mainly to the UVB (290-320 nm) waveband is a prerequisite for skin cancer development in mice and humans. The contribution of UVA (320-400 nm) is controversial, but in mice UVA irradiation has been found to antagonise immunosuppression by UVB. In other studies of photoimmune regulation, protection mediated via oestrogen receptor-β signalling was identified as a normal endogenous defence in mice, and was shown to depend on UVA irradiation. A gender bias in photoimmune responsiveness was thus suggested, and is tested in this study by comparing the UV-induced inflammatory and immune responses in male and female hairless mice. We report that male mice, which show greater skin thickness than females, developed a less intense but slower resolving sunburn inflammatory oedema, correlated with reduced epidermal expression of pro-inflammatory IL-6 than females following solar simulated UV (SSUV, 290-400 nm) exposure. On the other hand, the contact hypersensitivity reaction (CHS) was more severely suppressed by SSUV in males, correlated with increased epidermal expression of immunosuppressive IL-10. Exposure to the UVB waveband alone, or to cis-urocanic acid, suppressed CHS equally in males and females. However, whereas UVA irradiation induced immunoprotection against either UVB or cis-urocanic acid in females, this protection was significantly reduced or abrogated in males. The results indicate that males are compromised by a relative unresponsiveness to the photoimmune protective effects of UVA, alone or as a component of SSUV. This could explain the known gender bias in skin cancer development in both mice and humans.  相似文献   
80.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号