首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   538篇
  免费   97篇
  2021年   7篇
  2019年   5篇
  2018年   5篇
  2017年   5篇
  2016年   8篇
  2015年   21篇
  2014年   18篇
  2013年   32篇
  2012年   25篇
  2011年   29篇
  2010年   22篇
  2009年   13篇
  2008年   23篇
  2007年   22篇
  2006年   21篇
  2005年   18篇
  2004年   22篇
  2003年   10篇
  2002年   17篇
  2001年   19篇
  2000年   11篇
  1999年   19篇
  1997年   7篇
  1996年   7篇
  1992年   11篇
  1991年   10篇
  1990年   6篇
  1989年   11篇
  1988年   14篇
  1987年   9篇
  1986年   6篇
  1985年   15篇
  1984年   8篇
  1983年   8篇
  1982年   7篇
  1981年   10篇
  1980年   5篇
  1979年   9篇
  1978年   5篇
  1976年   6篇
  1975年   4篇
  1974年   6篇
  1973年   9篇
  1972年   6篇
  1971年   4篇
  1969年   14篇
  1968年   8篇
  1967年   5篇
  1966年   7篇
  1965年   4篇
排序方式: 共有635条查询结果,搜索用时 15 毫秒
161.
162.
The microtubule motors, cytoplasmic dynein and kinesin II, drive pigmented organelles in opposite directions in Xenopus melanophores, but the mechanism by which these or other motors are regulated to control the direction of organelle transport has not been previously elucidated. We find that cytoplasmic dynein, dynactin, and kinesin II remain on pigment granules during aggregation and dispersion in melanophores, indicating that control of direction is not mediated by a cyclic association of motors with these organelles. However, the ability of dynein, dynactin, and kinesin II to bind to microtubules varies as a function of the state of aggregation or dispersion of the pigment in the cells from which these molecules are isolated. Dynein and dynactin bind to microtubules when obtained from cells with aggregated pigment, whereas kinesin II binds to microtubules when obtained from cells with dispersed pigment. Moreover, the microtubule binding activity of these motors/dynactin can be reversed in vitro by the kinases and phosphatase that regulate the direction of pigment granule transport in vivo. These findings suggest that phosphorylation controls the direction of pigment granule transport by altering the ability of dynein, dynactin, and kinesin II to interact with microtubules.  相似文献   
163.
164.
165.
Fishy odor of urine and other secretions is a characteristic of trimethylaminuria in humans, resulting from loss-of-function mutations in the flavin-containing mono-oxygenase isoform FMO3. A similar phenotype exists in cattle, in which a nonsense mutation in the bovine orthologue causes fishy off-flavor in cow's milk. The fishy odor is caused by an elevated level of excreted odorous trimethylamine (TMA), due to deficient oxidation of TMA. We report the mapping of a similar disorder (fishy taint of eggs) and the chicken FMO3 gene to chicken chromosome 8. The only nonsynonymous mutation identified in the chicken FMO3 gene (T329S) changes an evolutionarily highly conserved amino acid and is associated with elevated levels of TMA and fishy taint in the egg yolk in several chicken lines. No differences in the expression of FMO3 were found among individuals with different associated genotypes, indicating that the trait is not caused by a linked polymorphism causing altered expression of the gene. The results support the importance and function of the evolutionarily conserved motif FATGY, which has been speculated to be a substrate recognition pocket of N-hydroxylating siderophore enzymes and flavin-containing mono-oxygenases.  相似文献   
166.
The wheat lines (cultivars) 'Largo', 'TAM110', 'KS89WGRC4', and 'KSU97-85-3' conferring resistance to greenbug, Schizaphis graminum (Rondani), biotypes E, I, and K were evaluated to determine the categories of resistance in each line to greenbug biotype K. Our results indicated that Largo, TAM110, KS89WGRC4, and KSU97-85-3 expressed both antibiosis and tolerance to biotype K. Largo, KS89WGRC4, and KSU97-85-3, which express antixenosis to biotype I, did not demonstrate antixenosis to biotype K. The results indicate that the same wheat lines may possess different categories of resistance to different greenbug biotypes. A new cage procedure for measuring greenbug intrinsic rate of increase (r(m)) was developed, by using both drinking straw and petri dish cages, to improve the efficiency and accuracy of r(m)-based antibiosis measurements.  相似文献   
167.
The biohydroxylation of stemodin and stemodinone by Beauveria bassiana ATCC 7159 gave exclusively 2alpha,13,18-trihydroxystemodane and 13,18-dihydroxystemodan-2-one respectively. Stemarin was converted to the novel 1beta,13,19-trihydroxystemarane and 13-hydroxystemarane-19-carboxylic acid. The synthesis and biotransformation of various derivatives of stemodin have also been studied.  相似文献   
168.
The major avenues of extrapulmonary oxygen uptake were determined on submerged western painted turtles (Chrysemys picta bellii) at 10 degrees C by selectively blocking one or more potential pathways for exchange. Previous work indicated that the skin, the cloaca, and the buccopharyngeal cavity can all contribute significantly in various species of turtles. O(2) uptake was calculated from the rate of fall in water P(O(2)) in a closed chamber. Two series of experiments were conducted: in Series 1, each of the potential avenues was mechanically blocked either singly or in combination; in Series 2, active cloacal and buccal pumping were prevented pharmacologically using the paralytic agent rocuronium. In addition in Series 2, N(2)-breathing preceded submergence in some animals and in one set of Series 2 experiments arterial blood was sampled and analyzed for pH, lactate, P(O(2)), and P(CO(2)). Results in both Series 1 and Series 2 revealed that prevention of cloacal and/or buccopharyngeal exchange did not significantly affect total O(2) uptake. Interfering with skin diffusion in Series 1, however, significantly reduced O(2) uptake by 50%. N(2)-breathing prior to submergence in Series 2 did not affect O(2) uptake in paralyzed turtles but significantly increased uptake in unparalyzed turtles without catheters. Blood analysis revealed that all submerged turtles developed lactic acidosis, but the rate of rise in lactate was significantly lower in paralyzed animals. We conclude that passive diffusion through the integument is the principal avenue of aquatic O(2) uptake in this species.  相似文献   
169.
The negative regulation of vascular patterning is one of the least understood processes in vascular biology. In amniotes, blood vessels develop throughout the embryonic disc, except for a midline region surrounding the notochord. Here we show that the notochord is the primary signaling center for the inhibition of vessel formation along the embryonic midline. Notochord ablation in quail embryos results in vascular plexus formation at midline. Implantation of the notochord into paraxial and lateral mesoderm inhibits vessel formation locally. The notochord-expressed BMP antagonists Chordin and Noggin inhibit endothelial cell migration in vitro, and their ectopic expression in vivo results in a local disruption of vessel formation. Conversely, BMP-4 activates endothelial cell migration in vitro, and its ectopic expression along the notochord induces vascular plexus formation at midline. These data indicate an inhibitory role of the notochord in defining an avascular zone at the embryonic midline, in part via BMP antagonism.  相似文献   
170.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号