首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   307篇
  免费   10篇
  317篇
  2023年   3篇
  2022年   11篇
  2021年   39篇
  2020年   11篇
  2019年   18篇
  2018年   22篇
  2017年   7篇
  2016年   19篇
  2015年   28篇
  2014年   21篇
  2013年   25篇
  2012年   32篇
  2011年   16篇
  2010年   12篇
  2009年   9篇
  2008年   6篇
  2007年   8篇
  2006年   5篇
  2005年   2篇
  2004年   5篇
  2003年   1篇
  2002年   3篇
  2001年   1篇
  1999年   4篇
  1998年   2篇
  1997年   1篇
  1996年   1篇
  1995年   1篇
  1994年   2篇
  1982年   1篇
  1971年   1篇
排序方式: 共有317条查询结果,搜索用时 15 毫秒
201.
202.
Recent expansion of immunocompromised population has led to significant rise in zygomycosis caused by filamentous fungus Rhizopus oryzae. Due to emergence of fungal resistance and side-effects of antifungal drugs, there is increased demand for novel drug targets. The current study elucidates molecular interactions of peptide drugs with G-6-P synthase (catalyzing the rate-limiting step of fungal cell wall biosynthetic pathway) of R.oryzae by molecular docking studies. The PDB structures of enzyme in R.oryzae are not known which were predicted using I-TASSER server and validated with PROCHECK. Peptide inhibitors, FMDP and ADGP previously used against enzyme of E.coli (PDBid: 1XFF), were used for docking studies of enzyme in R.oryzae by SchrödingerMaestro v9.1. To investigate binding between enzyme and inhibitors, Glide and Induced Fit docking were performed. IFD results of 1XFF with FMDP yielded C1, R73, W74, T76, G99 and D123 as the binding sites. C379 and Q427 appear to be vital for binding of R.oryzae enzymes to inhibitors. The comparison results of IFD scores of enzyme in R.oryzae and E.coli (PDBid: 2BPL) yield appreciable score, hinting at the probable effectiveness of inhibitors FMDP and ADGP against R.oryzae, with ADGP showing an improved enzyme affinity. Moreover, the two copies of gene G-6-P synthase due to extensive fungal gene duplication, in R. oryzae eliminating the problem of drug ineffectiveness could act as a potential antifungal drug target in R. oryzae with the application of peptide ligands.  相似文献   
203.
204.
Mycopathologia - The predominance of non-Candida albicans Candida (NCAC) species causing healthcare-associated infections has increased over the last decade pertaining to their ability to form...  相似文献   
205.
Metformin treatment has been associated with a decrease in breast cancer risk and improved survival. Metformin induces complex cellular changes, resulting in decreased tumor cell proliferation, reduction of stem cells, and apoptosis. Using a carcinogen-induced rodent model of mammary tumorigenesis, we recently demonstrated that overfeeding in obese animals is associated with a 50% increase in tumor glucose uptake, increased proliferation, and tumor cell reprogramming to an “aggressive” metabolic state. Metformin significantly inhibited these pro-tumorigenic effects. We hypothesized that a dynamic relationship exists between chronic energy excess (glucose by dose) and metformin efficacy/action.

Media glucose concentrations above 5 mmol/L was associated with significant increase in breast cancer cell proliferation, clonogenicity, motility, upregulation/activation of pro-oncogenic signaling, and reduction in apoptosis. These effects were most significant in triple-negative breast cancer (TNBC) cell lines. High-glucose conditions (10 mmol/L or above) significantly abrogated the effects of metformin. Mechanisms of metformin action at normal vs. high glucose overlapped but were not identical; for example, metformin reduced IGF-1R expression in both the HER2+ SK-BR-3 and TNBC MDA-MB-468 cell lines more significantly at 5, as compared with 10 mmol/L glucose. Significant changes in gene profiles related to apoptosis, cellular processes, metabolic processes, and cell proliferation occurred with metformin treatment in cells grown at 5 mmol/L glucose, whereas under high-glucose conditions, metformin did not significantly increase apoptotic/cellular death genes. These data indicate that failure to maintain glucose homeostasis may promote a more aggressive breast cancer phenotype and alter metformin efficacy and mechanisms of action.  相似文献   
206.
207.
Microbial associations with corals are common and are most likely symbiotic, although their diversity and relationships with environmental factors and host species remain unclear. In this study, we adopted a 16S rRNA gene tag-pyrosequencing technique to investigate the bacterial communities associated with three stony Scleractinea and two soft Octocorallia corals from three locations in the Red Sea. Our results revealed highly diverse bacterial communities in the Red Sea corals, with more than 600 ribotypes detected and up to 1,000 species estimated from a single coral species. Altogether, 21 bacterial phyla were recovered from the corals, of which Gammaproteobacteria was the most dominant group, and Chloroflexi, Chlamydiae, and the candidate phylum WS3 were reported in corals for the first time. The associated bacterial communities varied greatly with location, where environmental conditions differed significantly. Corals from disturbed areas appeared to share more similar bacterial communities, but larger variations in community structures were observed between different coral species from pristine waters. Ordination methods identified salinity and depth as the most influential parameters affecting the abundance of Vibrio, Pseudoalteromonas, Serratia, Stenotrophomonas, Pseudomonas, and Achromobacter in the corals. On the other hand, bacteria such as Chloracidobacterium and Endozoicomonas were more sensitive to the coral species, suggesting that the host species type may be influential in the associated bacterial community, as well. The combined influences of the coral host and environmental factors on the associated microbial communities are discussed. This study represents the first comparative study using tag-pyrosequencing technology to investigate the bacterial communities in Red Sea corals.  相似文献   
208.
Molecular Biology Reports - A number of liver diseases are known to be caused by oxidative stress. Petroselinum sativum (P. sativum; parsley) is popular for its anti-inflammatory, antimicrobial,...  相似文献   
209.
Kotaka M  Ye H  Alag R  Hu G  Bozdech Z  Preiser PR  Yoon HS  Lescar J 《Biochemistry》2008,47(22):5951-5961
The emergence of multi-drug-resistant strains of Plasmodium parasites has prompted the search for alternative therapeutic strategies for combating malaria. One possible strategy is to exploit existing drugs as lead compounds. FK506 is currently used in the clinic for preventing transplant rejection. It binds to a alpha/beta protein module of approximately 120 amino acids known as the FK506 binding domain (FKBD), which is found in various organisms, including human, yeast, and Plasmodium falciparum (PfFKBD). Antiparasitic effects of FK506 and its analogues devoid of immunosuppressive activities have been demonstrated. We report here the crystallographic structure at 2.35 A resolution of PfFKBD complexed with FK506. Compared to the human FKBP12-FK506 complex reported earlier, the structure reveals structural differences in the beta5-beta6 segment that lines the FK506 binding site. The presence in PfFKBD of Cys-106 and Ser-109 (substituting for His-87 and Ile-90, respectively, in human FKBP12), which are 4-5 A from the nearest atom of the FK506 compound, suggests possible routes for the rational design of analogues of FK506 with specific antiparasitic activity. Upon ligand binding, several conformational changes occur in PfFKBD, including aromatic residues that shape the FK506 binding pocket as shown by NMR studies. A microarray analysis suggests that FK506 and cyclosporine A (CsA) might inhibit parasite development by interfering with the same signaling pathways.  相似文献   
210.
In this study, the effects of calcium (Ca2+) application on acquired systemic tolerance mechanism to cadmium (Cd) stress in sesame (Sesamum indicum L.) were studied. The Cd stress reduced the root and shoot growth of sesame, and plant contents of photosynthetic pigments; however, the application of Ca2+ improved these parameters under Cd stress condition. The hydrogen peroxide, malondialdehyde and soluble sugar contents were higher under Cd stress, and were reduced by Ca2+ treatment. The antioxidant enzyme activities in the leaves of sesame, superoxide dismutase (SOD), peroxidase (POD), catalase (CAT), ascorbate peroxidase (APX) and glutathione reductase (GR) were higher under Cd stress, whereas reduced concentration was observed in Ca2+-treated plants. Cd stress increased the contents of diacylglycerol and sterol ester; however Ca2+ treatment resulted in a significant increase in phosphatidylcholine, phosphatidylethanolamine, phosphatidylglycerol, phosphatidylinositol and phosphatidylserine. Our results indicated that application of calcium enables sesame plants to withstand the deleterious impact of cadmium through upregulating acquired systemic tolerance system as lipid fractions (galactolipids, phospholipids, neutral lipids), antioxidant enzymes (SOD, POD, CAT, APX, GR) hence protect membrane functions.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号