首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   167篇
  免费   9篇
  2023年   4篇
  2022年   9篇
  2021年   16篇
  2020年   8篇
  2019年   9篇
  2018年   5篇
  2017年   2篇
  2016年   4篇
  2015年   7篇
  2014年   8篇
  2013年   9篇
  2012年   12篇
  2011年   14篇
  2010年   10篇
  2009年   4篇
  2008年   11篇
  2007年   10篇
  2006年   5篇
  2005年   6篇
  2004年   4篇
  2003年   4篇
  2002年   3篇
  1994年   1篇
  1990年   1篇
  1987年   2篇
  1985年   2篇
  1984年   1篇
  1979年   1篇
  1976年   1篇
  1974年   1篇
  1969年   1篇
  1968年   1篇
排序方式: 共有176条查询结果,搜索用时 31 毫秒
161.
Aip1p cooperates with actin-depolymerizing factor (ADF)/cofilin to disassemble actin filaments in vitro and in vivo, and is proposed to cap actin filament barbed ends. We address the synergies between Aip1p and the capping protein heterodimer Acp1p/Acp2p during clathrin-mediated endocytosis in fission yeast. Using quantitative microscopy and new methods we have developed for data alignment and analysis, we show that heterodimeric capping protein can replace Aip1p, but Aip1p cannot replace capping protein in endocytic patches. Our quantitative analysis reveals that the actin meshwork is organized radially and is compacted by the cross-linker fimbrin before the endocytic vesicle is released from the plasma membrane. Capping protein and Aip1p help maintain the high density of actin filaments in meshwork by keeping actin filaments close enough for cross-linking. Our experiments also reveal new cellular functions for Acp1p and Acp2p independent of their capping activity. We identified two independent pathways that control polarization of endocytic sites, one depending on acp2+ and aip1+ during interphase and the other independent of acp1+, acp2+, and aip1+ during mitosis.  相似文献   
162.
163.
A comparative study (Sun et al., 2019) showed that the abundance of proteins at sites of endocytosis in fission and budding yeast is more similar in the two species than previously thought, yet membrane invaginations in fission yeast elongate twofold faster and are nearly twice as long as in budding yeast. Here we use a three-dimensional model of a motile endocytic invagination (Nickaeen et al., 2019) to investigate factors affecting elongation of the invaginations. We found that differences in turgor pressure in the two yeast species can largely explain the paradoxical differences observed experimentally in endocytic motility.  相似文献   
164.
165.
166.
167.

Background  

RNA interference (RNAi) is a regulatory mechanism conserved in higher eukaryotes. The RNAi pathway generates small interfering RNA (siRNA) or micro RNA (miRNA) from either long double stranded stretches of RNA or RNA hairpins, respectively. The siRNA or miRNA then guides an effector complex to a homologous sequence of mRNA and regulates suppression of gene expression through one of several mechanisms. The suppression of gene expression through these mechanisms serves to regulate endogenous gene expression and protect the cell from foreign nucleic acids. There is growing evidence that many viruses have developed in the context of RNAi and express either a suppressor of RNAi or their own viral miRNA.  相似文献   
168.
Real-time PCR (qRT-PCR) is the standard method for studying changes in relative gene expression in complex diseases like obesity and gastritis. However, variations in amount of starting material, enzymatic efficiency and presence of amplification inhibitors can lead to quantification errors. Hence, the need for accurate data normalization is vital. Among several known strategies for data normalization, the use of reference genes as an internal control is the most common approach. Human gastric tissue has been the least investigated for stability of reference gene expression. In this study, three popular algorithms, GeNorm, NormFinder and BestKeeper were used to evaluate the reference gene stability. Conclusion: HPRT1 and GAPDH are the best performing pair of reference genes for qRT-PCR profiling experiments involving non-malignant gastric tissue samples.  相似文献   
169.
170.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号