首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   158篇
  免费   35篇
  193篇
  2021年   3篇
  2018年   2篇
  2017年   1篇
  2016年   2篇
  2015年   6篇
  2014年   4篇
  2013年   4篇
  2012年   2篇
  2011年   6篇
  2010年   4篇
  2009年   5篇
  2008年   5篇
  2007年   10篇
  2006年   8篇
  2005年   8篇
  2004年   12篇
  2003年   7篇
  2002年   7篇
  2001年   6篇
  2000年   8篇
  1999年   10篇
  1998年   12篇
  1997年   5篇
  1996年   2篇
  1995年   2篇
  1994年   4篇
  1993年   5篇
  1992年   1篇
  1991年   1篇
  1990年   5篇
  1989年   3篇
  1988年   2篇
  1987年   1篇
  1986年   4篇
  1985年   3篇
  1984年   3篇
  1983年   1篇
  1982年   2篇
  1980年   2篇
  1978年   1篇
  1977年   2篇
  1976年   1篇
  1975年   1篇
  1973年   1篇
  1972年   1篇
  1971年   2篇
  1969年   1篇
  1968年   1篇
  1965年   1篇
  1947年   1篇
排序方式: 共有193条查询结果,搜索用时 15 毫秒
51.
Genetic constitution in the intertidal gastropod Nucella lapillus (L.) influences shell shape, growth rate and physiology. Clinal variation in these traits along a 5 km stretch of coastline in south Devon can be related to environmental variation in temperature and desiccation stress. We have examined mtDNA variation along this shore to investigate whether the cline represents primary or secondary contact. Two distinct mtDNA haplotypes were found which exhibit coincident step clines with karyotypic, allozymic and phenotypic variation and covary with the environmental pressures of temperature and desiccation. These results are interpreted in the context of the wider scale distribution of genetic and phenotypic variation in N. lapillus. It is suggested that the shore studied may represent one of a number of regions of secondary contact within a mosaic hybrid zone in N. lapillus , where coadapted phenotypic variation correlates with habitat and the position of the clines represents an environmental transition.  相似文献   
52.
53.
Two attached non-rigor crossbridge forms in insect flight muscle   总被引:1,自引:0,他引:1  
We have performed thin-section electron microscopy on muscle fibers fixed in different mechanically monitored states, in order to identify structural changes in myosin crossbridges associated with force production and maintenance. Tension and stiffness of fibers from glycerinated Lethocerus flight muscle were monitored during a sequence of conditions using AMPPNP and then AMPPNP plus increasing concentrations of ethylene glycol, which brought fibers through a graded sequence from rigor relaxation. Two intermediate crossbridge forms distinct from the rigor or relaxed forms were observed. The first was produced by AMPPNP at 20 degrees C, which reduced isometric tension 60 to 70% below rigor level without reducing rigor stiffness. Electron microscopy of these fibers showed that, in spite of the drop in tension, no obvious change from the 45 degrees crossbridge angle characteristic of rigor occurred. However, the thick filament ends of the crossbridges were altered from their rigor positions, so that they now marked a 14.5 nm repeat, and formed four separate origins at each crossbridge level. The bridges were also less slewed and bent than rigor bridges, as seen in transverse sections. The second crossbridge form was seen in glycol-AMPPNP at 4 degrees C, just below the glycol concentration that produced mechanical relaxation. These fibers retained 90% of rigor stiffness at 40 Hz oscillation, but would not bear sustained tension. Stiffness was also high in the presence of calcium at room temperature under similar conditions. Electron microscopy showed crossbridges projecting from the thick filaments at an angle that centered around 90 degrees, rather than the 45 degree angle familiar from rigor. This coupling of relaxed appearance with persistent stiffness suggests that the 90 degree form may represent a weakly attached crossbridge state like that proposed to precede force development in current models of the crossbridge power stroke.  相似文献   
54.
The structure of glycerinated Lethocerus insect flight muscle fibers, relaxed by spin-labeled ATP and vanadate (Vi), was examined using X-ray diffraction, electron microscopy and electron paramagnetic resonance (e.p.r.) spectra. We obtained excellent relaxation of MgATP quality as determined by mechanical criteria, using vanadate trapping of 2' spin-labeled 3' deoxyATP at 3 degree C. In rigor fibers, when the diphosphate analog is bound in the absence of Vi, the probes on myosin heads are well-ordered, in agreement with electron microscopic and X-ray patterns showing that myosin heads are ordered when attached strongly to actin. In relaxed muscle, however, e.p.r. spectra report orientational disorder of bound (Vi-trapped) spin-labeled nucleotide, while electron microscopic and X-ray patterns both show well-ordered bridges at a uniform 90 degrees angle to the filament axis. The spin-labeled nucleotide orientation is highly disordered, but not completely isotropic; the slight anisotropy observed in probe spectra is consistent with a shift of approximately 10% of probes from angles close to 0 degrees to angles close to 90 degrees. Measurements of probe mobility suggest that the interaction between probe and protein remains as tight in relaxed fibers as in rigor, and thus that the disorder in relaxed fibers arises from disorders of (or within) the protein and not from disorder of the probe relative to the protein. Fixation of the relaxed fibers with glutaraldehyde did not alter any aspect of the spectrum of the Vi-trapped analog, including the slight order observed, showing that the extensive inter- and intra-molecular cross-linking of the first step of sample preparation for electron microscopy had not altered relaxed crossbridge orientations. Two models that may reconcile the apparently disparate results obtained on relaxed fibers are presented: (1) a rigid myosin head could possess considerable disorder in the regular array about the thick filament; or (2) the nucleotide site could be on a disordered, probably distal, domain of myosin, while a more proximal region is well ordered on the thick filament backbone. Our findings suggest that when e.p.r. probes signal disorder of a local site or domain, this is complementary, not contradictory, to signals of general order. The e.p.r. spectra show that a portion of the myosin molecule can be disordered at the same time as the X-ray diffraction and electron microscopy show the bulk of myosin head mass to be uniformly oriented and regularly arrayed.  相似文献   
55.
Flightin is a multiply phosphorylated, 20-kD myofibrillar protein found in Drosophila indirect flight muscles (IFM). Previous work suggests that flightin plays an essential, as yet undefined, role in normal sarcomere structure and contractile activity. Here we show that flightin is associated with thick filaments where it is likely to interact with the myosin rod. We have created a null mutation for flightin, fln(0), that results in loss of flight ability but has no effect on fecundity or viability. Electron microscopy comparing pupa and adult fln(0) IFM shows that sarcomeres, and thick and thin filaments in pupal IFM, are 25-30% longer than in wild type. fln(0) fibers are abnormally wavy, but sarcomere and myotendon structure in pupa are otherwise normal. Within the first 5 h of adult life and beginning of contractile activity, IFM fibers become disrupted as thick filaments and sarcomeres are variably shortened, and myofibrils are ruptured at the myotendon junction. Unusual empty pockets and granular material interrupt the filament lattice of adult fln(0) sarcomeres. Site-specific cleavage of myosin heavy chain occurs during this period. That myosin is cleaved in the absence of flightin is consistent with the immunolocalization of flightin on the thick filament and biochemical and genetic evidence suggesting it is associated with the myosin rod. Our results indicate that flightin is required for the establishment of normal thick filament length during late pupal development and thick filament stability in adult after initiation of contractile activity.  相似文献   
56.
The tradeoff between survival and reproduction is a central feature of life‐history variation, but few studies have sought to explain why females of some species exhibit relatively lower survival than expected for a given level of reproductive effort (RE). Intralocus sexual conflict theory proposes that sex differences in selection on survival and RE may, by virtue of shared genes underlying these components of fitness, prevent females from optimizing this life‐history tradeoff. To test this hypothesis, we used a phylogenetically based comparative analysis of published estimates for mean annual survival and RE from females of 82 lizard species to (1) characterize the tradeoff between survival and reproduction and (2) test whether variation around this tradeoff is explained by sexual size dimorphism (SSD), a potential proxy for sexual conflict over life‐history traits. Across species, we found a strong negative correlation between mean annual survival and RE, confirming this classic life‐history tradeoff. Although residual variance around this tradeoff is unrelated to the absolute magnitude of SSD, it is strongly related to the direction of SSD. Specifically, we found that females have lower survival than expected for a given level of RE in female‐larger species, whereas they have higher survival than expected in male‐larger species. Given that female‐larger SSD is thought to reflect selection for increased fecundity, our results suggest that intralocus sexual conflict may be particularly likely to constrain female life‐history evolution in situations where increased RE is favored, but the phenotypes that facilitate this increase (e.g., body size) are constrained by antagonistic selection on males.  相似文献   
57.
Enterotoxigenic Escherichia coli (ETEC) is a prevalent cause of traveler's diarrhea and infant mortality in third-world countries. Heat-labile enterotoxin (LT) is secreted from ETEC via vesicles composed of outer membrane and periplasm. We investigated the role of ETEC vesicles in pathogenesis by analyzing vesicle association and entry into eukaryotic cells. Fluorescently labeled vesicles from LT-producing and LT-nonproducing strains were compared in their ability to bind adrenal and intestinal epithelial cells. ETEC-derived vesicles, but not control nonpathogen-derived vesicles, associated with cells in a time-, temperature-, and receptor-dependent manner. Vesicles were visualized on the cell surface at 4 degrees C and detected intracellularly at 37 degrees C. ETEC vesicle endocytosis depended on cholesterol-rich lipid rafts. Entering vesicles partially colocalized with caveolin, and the internalized vesicles accumulated in a nonacidified compartment. We conclude that ETEC vesicles serve as specifically targeted transport vehicles that mediate entry of active enterotoxin and other bacterial envelope components into host cells. These data demonstrate a role in virulence for ETEC vesicles.  相似文献   
58.
Prostaglandin E2 release by carbamylcholine (10(-6) M), somatostatin (10(-10)-10(-8) M) and neurotensin (10(-10) - 10(-8) M) has been evaluated in the isolated perfused rat stomach. Carbamylcholine significantly stimulated gastric PGE2 release and increased the perfusion pressure, whereas somatostatin and neurotensin had no effect. Combination of carbamylcholine with somatostatin or neurotensin produced no increase over that found with carbamylcholine alone. The relationship between perfusion-pressure and PGE2 release was not causal. The present findings do not support a role for prostaglandins in the mechanism of somatostatin or neurotensin action in the stomach.  相似文献   
59.
60.
Two species of alpha-actinin from rabbit fast skeletal muscles were identified with a monospecific antisera. Designated alpha-actinin1f and alpha-actinin2f, their distribution in muscles does not correlate with histochemically defined fast fiber type. Rather, the presence of each correlates with Z-line width and with the expression of different thin filament Ca2+-regulatory complexes. alpha-Actinin1f is expressed with troponin T 1f-alpha beta tropomyosin, and alpha-actinin2f with troponin T 2f-alpha 2 tropomyosin. CNBr peptide maps show that the fast alpha-actinin species differ in primary structure. In contrast, the slow alpha-actinin is indistinguishable from alpha-actinin1f. Further evidence for the similarity of alpha-actinin1f and slow alpha-actinin comes from electron microscopic studies which show that fibers that express these species exhibit thick Z-lines. So, unlike other contractile proteins, the multiple forms of alpha-actinin do not reflect the distinction between fast- and slow-twitch muscles.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号