首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2743篇
  免费   185篇
  国内免费   3篇
  2023年   8篇
  2022年   21篇
  2021年   37篇
  2020年   17篇
  2019年   31篇
  2018年   32篇
  2017年   28篇
  2016年   55篇
  2015年   100篇
  2014年   92篇
  2013年   148篇
  2012年   211篇
  2011年   203篇
  2010年   126篇
  2009年   105篇
  2008年   152篇
  2007年   193篇
  2006年   161篇
  2005年   144篇
  2004年   158篇
  2003年   170篇
  2002年   146篇
  2001年   22篇
  2000年   12篇
  1999年   32篇
  1998年   32篇
  1997年   32篇
  1996年   25篇
  1995年   28篇
  1994年   25篇
  1993年   22篇
  1992年   28篇
  1991年   21篇
  1990年   19篇
  1989年   19篇
  1988年   11篇
  1987年   14篇
  1986年   18篇
  1985年   22篇
  1984年   20篇
  1983年   15篇
  1982年   19篇
  1981年   19篇
  1980年   15篇
  1979年   10篇
  1977年   13篇
  1975年   13篇
  1974年   10篇
  1969年   8篇
  1968年   8篇
排序方式: 共有2931条查询结果,搜索用时 359 毫秒
201.

Background

Insulin glargine (Lantus®) is a long-acting basal insulin analog that demonstrates effective day-long glycemic control and a lower incidence of hypoglycemia than NPH insulin. After subcutaneous injection insulin glargine is partly converted into the two main metabolites M1 ([GlyA21]insulin) and M2 ([GlyA21,des-ThrB30]insulin). The aim of this study was to characterize the glargine metabolites in vitro with regard to their insulin receptor (IR) and IGF-1 receptor (IGF1R) binding and signaling properties as well as their metabolic and mitogenic activities.

Methods

The affinity of human insulin, insulin glargine and its metabolites to the IR isoforms A and B or IGF1R was analyzed in a competitive binding assay using SPA technology. Receptor autophosphorylation activities were studied via In-Cell Western in CHO and MEF cells overexpressing human IR-A and IR-B or IGF1R, respectively. The metabolic response of the insulins was studied as stimulation of lipid synthesis using primary rat adipocytes. Thymidine incorporation in Saos-2 cells was used to characterize the mitogenic activity.

Conclusions

The binding of insulin glargine and its metabolites M1 and M2 to the IR were similar and correlated well with their corresponding autophosphorylation and metabolic activities in vitro. No differences were found towards the two IR isoforms A or B. Insulin glargine showed a higher affinity for IGF1R than insulin, resulting in a lower EC50 value for autophosphorylation of the receptor and a more potent stimulation of thymidine incorporation in Saos-2 cells. In contrast, the metabolites M1 and M2 were significantly less active in binding to and activation of the IGF1R and their mitogenicity in Saos-2 cells was equal to human insulin. These findings strongly support the idea that insulin glargine metabolites contribute with the same potency as insulin glargine to blood glucose control but lead to significantly reduced growth-promoting activity.  相似文献   
202.
203.
Chloroplasts are bounded by a pair of outer membranes, the envelope, that is the only permanent membrane structure of the different types of plastids. Chloroplasts have had a long and complex evolutionary past and integration of the envelope membranes in cellular functions is the result of this evolution. Plastid envelope membranes contain a wide diversity of lipids and terpenoid compounds serving numerous biochemical functions and the flexibility of their biosynthetic pathways allow plants to adapt to fluctuating environmental conditions (for instance phosphate deprivation). A large body of knowledge has been generated by proteomic studies targeted to envelope membranes, thus revealing an unexpected complexity of this membrane system. For instance, new transport systems for metabolites and ions have been identified in envelope membranes and new routes for the import of chloroplast-specific proteins have been identified. The picture emerging from our present understanding of plastid envelope membranes is that of a key player in plastid biogenesis and the co-ordinated gene expression of plastid-specific protein (owing to chlorophyll precursors), of a major hub for integration of metabolic and ionic networks in cell metabolism, of a flexible system that can divide, produce dynamic extensions and interact with other cell constituents. Envelope membranes are indeed one of the most complex and dynamic system within a plant cell. In this review, we present an overview of envelope constituents together with recent insights into the major functions fulfilled by envelope membranes and their dynamics within plant cells. Special Issue of Photosynthesis Research in honor of Andrew A. Benson.  相似文献   
204.
The members of the Aquarana (or Rana catesbeiana species group) form a monophyletic group comprising seven species: R. catesbeiana, Rana clamitans, Rana grylio, Rana virgatipes, Rana septentrionalis, Rana heckscheri and Rana okaloosae. Previous work has led to structural characterization of the antimicrobial peptides present in electrically-stimulated skin secretions from the first five species listed and this study presents the primary structures of orthologs from the river frog R. heckscheri and the Florida bog frog R. okaloosae. Peptidomic analysis of R. heckscheri and R. okaloosae skin secretions led to the identification of peptides with antimicrobial activity belonging to the ranalexin, ranatuerin-2, and temporin families. In addition, a peptide (GFLDIIKDTGKDFAVKILNNLKCKLAGGCPR) was isolated from R. okaloosae whose primary structure identified it as a member of the palustrin-2 family. Consistent with previous data based upon morphological analysis and comparisons of the nucleotide sequences of mitochondrial and ribosomal genes, cladistic analysis based upon a comparison of the amino acid sequences of antimicrobial peptides indicates a sister-group relationship between R. heckscheri and R. grylio and a close, but less well defined, phylogenetic relationship between R. okaloosae and R. clamitans.  相似文献   
205.
206.
Computational methods are useful to identify favorable structures of transmembrane (TM) helix oligomers when experimental data are not available or when they cannot help to interpret helix-helix association. We report here a global search method using molecular dynamics (MD) simulations to predict the structures of transmembrane homo and heterodimers. The present approach is based only on sequence information without any experimental data and is first applied to glycophorin A to validate the protocol and to the HER2-HER3 heterodimer receptor. The method successfully reproduces the experimental structures of the TM domain of glycophorin A (GpA(TM)) with a root mean square deviation of 1.5 A. The search protocol identifies three energetically stable models of the TM domain of HER2-HER3 receptor with favorable helix-helix arrangement, including right-handed and left-handed coiled-coils. The predicted TM structures exhibit the GxxxG-like motif at the dimer interface which is presumed to drive receptor oligomerization. We demonstrate that native structures of TM domain can be predicted without quantitative experimental data. This search protocol could help to predict structures of the TM domain of HER heterodimer family.  相似文献   
207.
Phosphorylation plays a key role in regulating many signaling pathways. Although studies investigating the phosphorylated forms of signaling pathways are now commonplace, global analysis of protein phosphorylation and kinase activity has lagged behind genomics and proteomics. We have used a kinomics approach to study the effect of virus infection on host cell signaling in infected guinea pigs. Delineating the host responses which lead to clearance of a pathogen requires the use of a matched, comparative model system. We have used two passage variants of the arenavirus Pichinde, used as a biosafety level 2 model of Lassa fever virus as it produces similar pathologies in guinea pigs and humans, to compare the host cell responses between infections which lead to either a mild, self-limiting infection or lethal disease. Using this model, we can begin to understand the differences in signaling events which give rise to these markedly different outcomes. By contextualizing these data using pathway analysis, we have identified key differences in cellular signaling matrices. By comparing these differentially involved networks, we have identified a number of key signaling "nodes" which show differential phosphorylations between mild and lethal infections. We believe that these nodes provide potential targets for the development of antiviral therapies by acting at the level of the host response rather than by directly targeting viral proteins.  相似文献   
208.
The mutants H250A and D197A of Agp1 phytochrome from Agrobacterium tumefaciens were prepared and investigated by different spectroscopic and biochemical methods. Asp-197 and His-250 are highly conserved amino acids and are part of the hydrogen-bonding network that involves the chromophore. Both substitutions cause a destabilization of the protonated chromophore in the Pr state as revealed by resonance Raman and UV-visible absorption spectroscopy. Titration experiments demonstrate a lowering of the pK(a) from 11.1 (wild type) to 8.8 in H250A and 7.2 in D197A. Photoconversion of the mutants does not lead to the Pfr state. H250A is arrested in a meta-Rc-like state in which the chromophore is deprotonated. For H250A and the wild-type protein, deprotonation of the chromophore in meta-Rc is coupled to the release of a proton to the external medium, whereas the subsequent proton re-uptake, linked to the formation of the Pfr state in the wild-type protein, is not observed for H250A. No transient proton exchange with the external medium occurs in D197A, suggesting that Asp-197 may be the proton release group. Both mutants do not undergo the photo-induced protein structural changes that in the wild-type protein are detectable by size exclusion chromatography. These conformational changes are, therefore, attributed to the meta-Rc --> Pfr transition and most likely coupled to the transient proton re-uptake. The present results demonstrate that Asp-197 and His-250 are essential for stabilizing the protonated chromophore structure in the parent Pr state, which is required for the primary photochemical process, and for the complete photo-induced conversion to the Pfr state.  相似文献   
209.
210.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号