首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   314篇
  免费   31篇
  国内免费   1篇
  2024年   1篇
  2022年   8篇
  2021年   21篇
  2020年   7篇
  2019年   11篇
  2018年   8篇
  2017年   10篇
  2016年   10篇
  2015年   19篇
  2014年   23篇
  2013年   26篇
  2012年   31篇
  2011年   24篇
  2010年   11篇
  2009年   21篇
  2008年   18篇
  2007年   24篇
  2006年   18篇
  2005年   10篇
  2004年   18篇
  2003年   4篇
  2002年   7篇
  2001年   3篇
  2000年   3篇
  1999年   1篇
  1998年   1篇
  1996年   1篇
  1995年   2篇
  1994年   2篇
  1988年   1篇
  1985年   1篇
  1979年   1篇
排序方式: 共有346条查询结果,搜索用时 218 毫秒
71.
Despite frequent reporting of blood pressure (BP) during profound passive heat stress, both with and without a hypotensive challenge, the method by which BP is measured often varies between laboratories. It is unknown whether auscultatory and finger BP measures accurately reflect intra-arterial BP during dynamic changes in cardiac output and peripheral resistance associated with the aforementioned conditions. The purpose of this investigation was to test the hypothesis that auscultatory BP measured at the brachial artery, and finger BP measured by the Penaz method, are valid measures of intra-arterial BP during a passive heat stress and a heat-stressed orthostatic challenge, via lower body negative pressure (LBNP). Absolute (specific aim 1) and the change in (specific aim 2) systolic (SBP), diastolic (DBP), and mean BPs (MBP) were compared at normothermia, after a core temperature increase of 1.47 ± 0.09°C, and during subsequent LBNP. Heat stress did not change auscultatory SBP (6 ± 11 mmHg; P = 0.16), but Penaz SBP (-22 ± 16 mmHg; P < 0.001) and intra-arterial SBP (-11 ± 13 mmHg P = 0.017) decreased. In contrast, DBP and MBP did not differ between methods throughout heat stress. Compared with BP before LBNP, the magnitude of the reduction in BP with all three methods was similar throughout LBNP (P > 0.05). In conclusion, auscultatory SBP and Penaz SBP failed to track the decrease in intra-arterial SBP that occurred during the profound heat stress, while decreases in arterial BP during an orthostatic challenge are comparable between methodologies.  相似文献   
72.
Adrenomedullin2 (ADM2), also referred to as Intermedin (IMD) is expressed in trophoblast cells in human placenta and enhances the invasion and migration of first trimester HTR-8/SV-neo cells. Recently we demonstrated that infusion of IMD antagonist in pregnant rats causes feto-placental growth restriction suggesting a role for IMD in maintaining a successful pregnancy. Therefore, this study was undertaken to assess if IMD has a functional role in embryo implantation in a rat model. We show that IMD mRNA is expressed in rat implantation sites and its expression is significantly higher on day 15 in placenta compared to days 18-22. Infusion of IMD antagonist IMD????? from day 3 of pregnancy causes a significant decrease in the weights of day 9 implantation sites as well as serum levels of 17β-estradiol, progesterone, nitric oxide and serum MMP2 and MMP9 gelatinase activity. Further, expression of MMP2, MMP9, VEGF and PLGF protein levels are significantly downregulated in the implantation sites of IMD antagonist treated rats. This study suggests a potential involvement of IMD in regulating the factors that are critical for implantation and growth of the embryo and thus in establishment of normal rat pregnancy.  相似文献   
73.
SWI/SNF ATP-dependent chromatin-remodeling complexes containing either Brahma-related gene 1 (Brg1) or Brahma (Brm) play important roles in mammalian development. In this study we examined the roles of Brg1 and Brm in smooth muscle development, in vivo, through generation and analysis of mice harboring a smooth muscle-specific knockout of Brg1 on wild-type and Brm null backgrounds. Knockout of Brg1 from smooth muscle in Brg1(flox/flox) mice expressing Cre recombinase under the control of the smooth muscle myosin heavy-chain promoter resulted in cardiopulmonary defects, including patent ductus arteriosus, in 30 to 40% of the mice. Surviving knockout mice exhibited decreased expression of smooth muscle-specific contractile proteins in the gastrointestinal tract, impaired contractility, shortened intestines, disorganized smooth muscle cells, and an increase in apoptosis of intestinal smooth muscle cells. Although Brm knockout mice had normal intestinal structure and function, knockout of Brg1 on a Brm null background exacerbated the effects of knockout of Brg1 alone, resulting in an increase in neonatal lethality. These data show that Brg1 and Brm play critical roles in regulating development of smooth muscle and that Brg1 has specific functions within vascular and gastrointestinal smooth muscle that cannot be performed by Brm.  相似文献   
74.
Australia's ecosystems are the basis of our current and future prosperity, and our national well‐being. A strong and sustainable Australian ecosystem science enterprise is vital for understanding and securing these ecosystems in the face of current and future challenges. This Plan defines the vision and key directions for a national ecosystem science capability that will enable Australia to understand and effectively manage its ecosystems for decades to come. The Plan's underlying theme is that excellent science supports a range of activities, including public engagement, that enable us to understand and maintain healthy ecosystems. Those healthy ecosystems are the cornerstone of our social and economic well‐being. The vision guiding the development of this Plan is that in 20 years' time the status of Australian ecosystems and how they change will be widely reported and understood, and the prosperity and well‐being they provide will be secure. To enable this, Australia's national ecosystem science capability will be coordinated, collaborative and connected. The Plan is based on an extensive set of collaboratively generated proposals from national town hall meetings that also form the basis for its implementation. Some directions within the Plan are for the Australian ecosystem science community itself to implement, others will involve the users of ecosystem science and the groups that fund ecosystem science. We identify six equal priority areas for action to achieve our vision: (i) delivering maximum impact for Australia: enhancing relationships between scientists and end‐users; (ii) supporting long‐term research; (iii) enabling ecosystem surveillance; (iv) making the most of data resources; (v) inspiring a generation: empowering the public with knowledge and opportunities; (vi) facilitating coordination, collaboration and leadership. This shared vision will enable us to consolidate our current successes, overcome remaining barriers and establish the foundations to ensure Australian ecosystem science delivers for the future needs of Australia.  相似文献   
75.
Glioblastoma multiforme (GBM) is the most common and the most aggressive form of primary brain tumor. Jak2 is a non-receptor tyrosine kinase that is involved in proliferative signaling through its association with various cell surface receptors. Hyperactive Jak2 signaling has been implicated in numerous hematological disorders as well as in various solid tumors including GBM. Our lab has developed a Jak2 small molecule inhibitor known as G6. It exhibits potent efficacy in vitro and in several in vivo models of Jak2-mediated hematological disease. Here, we hypothesized that G6 would inhibit the pathogenic growth of GBM cells expressing hyperactive Jak2. To test this, we screened several GBM cell lines and found that T98G cells express readily detectable levels of active Jak2. We found that G6 treatment of these cells reduced the phosphorylation of Jak2 and STAT3, in a dose-dependent manner. In addition, G6 treatment reduced the migratory potential, invasive potential, clonogenic growth potential, and overall viability of these cells. The effect of G6 was due to its direct suppression of Jak2 function and not via off-target kinases, as these effects were recapitulated in T98G cells that received Jak2 specific shRNA. G6 also significantly increased the levels of caspase-dependent apoptosis in T98G cells, when compared to cells that were treated with vehicle control. Lastly, when T98G cells were injected into nude mice, G6 treatment significantly reduced tumor volume and this was concomitant with significantly decreased levels of phospho-Jak2 and phospho-STAT3 within the tumors themselves. Furthermore, tumors harvested from mice that received G6 had significantly less vimentin protein levels when compared to tumors from mice that received vehicle control solution. Overall, these combined in vitro and in vivo results indicate that G6 may be a viable therapeutic option against GBM exhibiting hyperactivation of Jak2.  相似文献   
76.
Necrotizing meningoencephalitis (NME) affects toy and small breed dogs causing progressive, often fatal, inflammation and necrosis in the brain. Genetic risk loci for NME previously were identified in pug dogs, particularly associated with the dog leukocyte antigen (DLA) class II complex on chromosome 12, but have not been investigated in other susceptible breeds. We sought to evaluate Maltese and Chihuahua dogs, in addition to pug dogs, to identify novel or shared genetic risk factors for NME development. Genome-wide association testing of single nucleotide polymorphisms (SNPs) in Maltese dogs with NME identified 2 regions of genome-wide significance on chromosomes 4 (chr4:74522353T>A, p = 8.1×10−7) and 15 (chr15:53338796A>G, p = 1.5×10−7). Haplotype analysis and fine-mapping suggests that ILR7 and FBXW7, respectively, both important for regulation of immune system function, could be the underlying associated genes. Further evaluation of these regions and the previously identified DLA II locus across all three breeds, revealed an enrichment of nominal significant SNPs associated with chromosome 15 in pug dogs and DLA II in Maltese and Chihuahua dogs. Meta-analysis confirmed effect sizes the same direction in all three breeds for both the chromosome 15 and DLA II loci (p = 8.6×10–11 and p = 2.5×10−7, respectively). This suggests a shared genetic background exists between all breeds and confers susceptibility to NME, but effect sizes might be different among breeds. In conclusion, we identified the first genetic risk factors for NME development in the Maltese, chromosome 4 and chromosome 15, and provide evidence for a shared genetic risk between breeds associated with chromosome 15 and DLA II. Last, DLA II and IL7R both have been implicated in human inflammatory diseases of the central nervous system such as multiple sclerosis, suggesting that similar pharmacotherapeutic targets across species should be investigated.  相似文献   
77.
There is an urgent need to develop approaches for repairing the damaged heart, discovering new therapeutic drugs that do not have toxic effects on the heart, and improving strategies to accurately model heart disease. The potential of exploiting human induced pluripotent stem cell (hiPSC) technology to generate cardiac muscle “in a dish” for these applications continues to generate high enthusiasm. In recent years, the ability to efficiently generate cardiomyogenic cells from human pluripotent stem cells (hPSCs) has greatly improved, offering us new opportunities to model very early stages of human cardiac development not otherwise accessible. In contrast to many previous methods, the cardiomyocyte differentiation protocol described here does not require cell aggregation or the addition of Activin A or BMP4 and robustly generates cultures of cells that are highly positive for cardiac troponin I and T (TNNI3, TNNT2), iroquois-class homeodomain protein IRX-4 (IRX4), myosin regulatory light chain 2, ventricular/cardiac muscle isoform (MLC2v) and myosin regulatory light chain 2, atrial isoform (MLC2a) by day 10 across all human embryonic stem cell (hESC) and hiPSC lines tested to date. Cells can be passaged and maintained for more than 90 days in culture. The strategy is technically simple to implement and cost-effective. Characterization of cardiomyocytes derived from pluripotent cells often includes the analysis of reference markers, both at the mRNA and protein level. For protein analysis, flow cytometry is a powerful analytical tool for assessing quality of cells in culture and determining subpopulation homogeneity. However, technical variation in sample preparation can significantly affect quality of flow cytometry data. Thus, standardization of staining protocols should facilitate comparisons among various differentiation strategies. Accordingly, optimized staining protocols for the analysis of IRX4, MLC2v, MLC2a, TNNI3, and TNNT2 by flow cytometry are described.  相似文献   
78.
79.
Abstract Human mesenchymal stem cells (hMSC) are able to differentiate into mature cells of various mesenchymal tissues. Recent studies have reported that hMSC may even give rise to cells of ectodermal origin. This indication of plasticity makes hMSC a promising donor source for cell-based therapies. This study explores the differentiation potential of hMSC in a tissue-specific microenvironment simulated in vitro . HMSC were cultured air-exposed on dermal equivalents (DEs) consisting of collagen types I and III with dermal fibroblasts and subjected to conditions similar to those used for tissue engineering of skin with keratinocytes. Culture conditions were additionally modified by pre-treating the cells with 5-azacytidine or supplementing the medium with all trans retinoic acid (RA). HMSC were capable of adaptation to epidermis-specific conditions without losing their mesenchymal multipotency. However, despite the viability and evident three-dimensional epidermis-like growth pattern, hMSC showed a persistent expression of mesenchymal but not of epithelial markers, thus indicating a lack of epidermal (trans) differentiation. Further, electron microscopy and immunohistochemical analyses demonstrated that hMSC cultured under epidermis-specific conditions adopted a myofibroblastic phenotype and function, promoted in particular by air exposure. In conclusion, multipotent hMSC failed to differentiate into E-cadherin- or cytokeratin-expressing cells under optimized organotypic culture conditions for keratinocytes but differentiated into myofibroblast-like cells contracting the extracellular matrix, a phenomenon that was enhanced by RA and 5-azacytidine. These results indicate that hMSC might contribute to wound-healing processes by extracellular matrix reorganization and wound contraction but not by differentiation into keratinocytes.  相似文献   
80.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号