首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   58篇
  免费   6篇
  2021年   2篇
  2020年   2篇
  2019年   1篇
  2018年   2篇
  2017年   2篇
  2016年   5篇
  2015年   6篇
  2014年   3篇
  2013年   6篇
  2012年   7篇
  2011年   7篇
  2010年   3篇
  2009年   1篇
  2008年   5篇
  2007年   2篇
  2006年   1篇
  2005年   4篇
  2003年   2篇
  1993年   1篇
  1987年   1篇
  1981年   1篇
排序方式: 共有64条查询结果,搜索用时 15 毫秒
31.
32.
33.
There is a theoretical risk of adverse events following immunization with a preservative-free, 2-dose vial formulation of 10-valent-pneumococcal conjugate vaccine (PCV10). We set out to measure this risk. Four population-based surveillance sites in Kenya (total annual birth cohort of 11,500 infants) were used to conduct a 2-year post-introduction vaccine safety study of PCV10. Injection-site abscesses occurring within 7 days following vaccine administration were clinically diagnosed in all study sites (passive facility-based surveillance) and, also, detected by caregiver-reported symptoms of swelling plus discharge in two sites (active household-based surveillance). Abscess risk was expressed as the number of abscesses per 100,000 injections and was compared for the second vs first vial dose of PCV10 and for PCV10 vs pentavalent vaccine (comparator). A total of 58,288 PCV10 injections were recorded, including 24,054 and 19,702 identified as first and second vial doses, respectively (14,532 unknown vial dose). The risk ratio for abscess following injection with the second (41 per 100,000) vs first (33 per 100,000) vial dose of PCV10 was 1.22 (95% confidence interval [CI] 0.37–4.06). The comparator vaccine was changed from a 2-dose to 10-dose presentation midway through the study. The matched odds ratios for abscess following PCV10 were 1.00 (95% CI 0.12–8.56) and 0.27 (95% CI 0.14–0.54) when compared to the 2-dose and 10-dose pentavalent vaccine presentations, respectively. In Kenya immunization with PCV10 was not associated with an increased risk of injection site abscess, providing confidence that the vaccine may be safely used in Africa. The relatively higher risk of abscess following the 10-dose presentation of pentavalent vaccine merits further study.  相似文献   
34.
35.
36.

Background

Hypercholesterolemia plays a critical role in atherosclerosis. CD34+ CD45dim Lineage- hematopoietic stem/progenitor cells (HSPCs) give rise to the inflammatory cells linked to atherosclerosis. In mice, high cholesterol levels mobilize HSPCs into the bloodstream, and promote their differentiation to granulocytes and monocytes. The objective of our study was to determine how cholesterol levels affect HSPC quantity in humans.

Methods

We performed a blinded, randomized hypothesis generating study in human subjects (n=12) treated sequentially with statins of differing potencies to vary lipid levels. CD34+ HSPC levels in blood were measured by flow cytometry. Hematopoietic colony forming assays confirmed the CD34+ population studied as HSPCs with multlineage differentiation potential. Mobilizing cytokine levels were measured by ELISA.

Results

The quantity of HSPCs was 0.15 ± 0.1% of buffy coat leukocytes. We found a weak, positive correlation between CD34+ HSPCs and both total and LDL cholesterol levels (r2=0.096, p < 0.025). Additionally, we tested whether cholesterol modulates CD34+ HSPCs through direct effects or on the levels of mobilizing cytokines. LDL cholesterol increased cell surface expression of CXCR4, G-CSFR affecting HSPC migration, and CD47 mediating protection from phagocytosis by immune cells. LDL cholesterol also increased proliferation of CD34+ HSPCs (28 ± 5.7%, n=6, p < 0.03). Finally, the HSPC mobilizing cytokine G-CSF (r2=0.0683, p < 0.05), and its upstream regulator IL-17 (r2=0.0891, p < 0.05) both correlated positively with LDL cholesterol, while SDF-1 levels were not significantly affected.

Conclusions

Our findings support a model where LDL cholesterol levels positively correlate with CD34+ HSPC levels in humans through effects on the levels of G-CSF via IL-17 promoting mobilization of HSPCs, and by direct effects of LDL cholesterol on HSPC proliferation. The findings are provocative of further study to determine if HSPCs, like cholesterol levels, are linked to CVD events.  相似文献   
37.
38.

Background

Cardiosphere-derived cells (CDCs) improve ventricular function and reduce fibrotic volume when administered via an infarct-related artery using the “stop-flow” technique. Unfortunately, myocyte loss and dysfunction occur globally in many patients with ischemic and non-ischemic cardiomyopathy, necessitating an approach to distribute CDCs throughout the entire heart. We therefore determined whether global intracoronary infusion of CDCs under continuous flow improves contractile function and stimulates new myocyte formation.

Methods and Results

Swine with hibernating myocardium from a chronic LAD occlusion were studied 3-months after instrumentation (n = 25). CDCs isolated from myocardial biopsies were infused into each major coronary artery (∼33×106 icCDCs). Global icCDC infusion was safe and while ∼3% of injected CDCs were retained, they did not affect ventricular function or myocyte proliferation in normal animals. In contrast, four-weeks after icCDCs were administered to animals with hibernating myocardium, %LADWT increased from 23±6 to 51±5% (p<0.01). In diseased hearts, myocyte proliferation (phospho-histone-H3) increased in hibernating and remote regions with a concomitant increase in myocyte nuclear density. These effects were accompanied by reductions in myocyte diameter consistent with new myocyte formation. Only rare myocytes arose from sex-mismatched donor CDCs.

Conclusions

Global icCDC infusion under continuous flow is feasible and improves contractile function, regresses myocyte cellular hypertrophy and increases myocyte proliferation in diseased but not normal hearts. New myocytes arising via differentiation of injected cells are rare, implicating stimulation of endogenous myocyte regeneration as the primary mechanism of repair.  相似文献   
39.
40.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号