首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   8825篇
  免费   909篇
  国内免费   3篇
  2023年   59篇
  2022年   152篇
  2021年   285篇
  2020年   153篇
  2019年   186篇
  2018年   221篇
  2017年   213篇
  2016年   352篇
  2015年   566篇
  2014年   568篇
  2013年   595篇
  2012年   737篇
  2011年   761篇
  2010年   502篇
  2009年   384篇
  2008年   544篇
  2007年   554篇
  2006年   420篇
  2005年   399篇
  2004年   414篇
  2003年   364篇
  2002年   326篇
  2001年   98篇
  2000年   67篇
  1999年   76篇
  1998年   89篇
  1997年   40篇
  1996年   57篇
  1995年   35篇
  1994年   34篇
  1993年   28篇
  1992年   46篇
  1991年   29篇
  1990年   29篇
  1989年   23篇
  1988年   15篇
  1987年   20篇
  1986年   21篇
  1985年   29篇
  1984年   23篇
  1983年   14篇
  1982年   17篇
  1981年   24篇
  1980年   16篇
  1979年   16篇
  1978年   15篇
  1973年   12篇
  1969年   9篇
  1968年   12篇
  1966年   10篇
排序方式: 共有9737条查询结果,搜索用时 31 毫秒
991.
992.
Infection elimination may be an important goal of control programs. Only in stochastic infection models can true infection elimination be observed as a fadeout. The phenomena of fadeout and variable prevalence are important in understanding the transmission dynamics of infectious diseases and these phenomena are essential to evaluate the effectiveness of control measures. To investigate the stochastic dynamics of Mycobacterium avium subsp. paratuberculosis (MAP) infection on US dairy herds with test-based culling intervention, we developed a multi-group stochastic compartmental model (a continuous time Markov chain model) with both horizontal and vertical transmission. The stochastic model predicted fadeout and within-herd prevalence to have a large variance. Although test-based culling intervention generally decreased prevalence over time, it took longer than desired by producers to eliminate the endemic MAP infection from a herd. Uncertainty analysis showed that, using annual culture test and culling of only high shedders or culling of both low and high shedders with a 12-month delay in culling of low shedders, MAP infection persisted in many herds beyond 20 years. While using semi-annual culture test and culling of low and high shedders with a 6-month delay in culling of low shedders, MAP infection in many herds would be extinct within 20 years. Sensitivity analysis of the cumulative density function of fadeout suggested that combining test-based culling intervention and reduction of transmission rates through improved management between susceptible calves and shedding animals may be more effective than either alone in eliminating endemic MAP infection. We also discussed the effects of other factors such as herd size, heifer replacement, and adult cow infection on the probability of fadeout.  相似文献   
993.
994.
The inhibitor-of-apoptosis (IAP) proteins encoded by baculoviruses bear a striking resemblance to the cellular IAP homologs of their invertebrate hosts. By virtue of the acquired selective advantage of blocking virus-induced apoptosis, baculoviruses may have captured cellular IAP genes that subsequently evolved for virus-specific objectives. To compare viral and host IAPs, we defined antiapoptotic properties of SfIAP, the principal cellular IAP of the lepidopteran host Spodoptera frugiperda. We report here that SfIAP prevented virus-induced apoptosis as well as viral Op-IAP3 (which is encoded by the Orgyia pseudotsugata nucleopolyhedrovirus) when overexpressed from the baculovirus genome. Like Op-IAP3, SfIAP blocked apoptosis at a step prior to caspase activation. Both of the baculovirus IAP repeats (BIRs) were required for SfIAP function. Moreover, deletion of the C-terminal RING motif generated a loss-of-function SfIAP that interacted and dominantly interfered with wild-type SfIAP. Like Op-IAP3, wild-type SfIAP formed intracellular homodimers, suggesting that oligomerization is a functional requirement for both cellular and viral IAPs. SfIAP possesses a ∼100-residue N-terminal leader domain, which is absent among all viral IAPs. Remarkably, deletion of the leader yielded a fully functional SfIAP with dramatically increased protein stability. Thus, the SfIAP leader contains an instability motif that may confer regulatory options for cellular IAPs that baculovirus IAPs have evolved to bypass for maximal stability and antiapoptotic potency. Our findings that SfIAP and viral IAPs have common motifs, share multiple biochemical properties including oligomerization, and act at the same step to block apoptosis support the hypothesis that baculoviral IAPs were derived by acquisition of host insect IAPs.Apoptosis is a prevalent host cell response to virus infection. Representing an important antivirus defense, apoptotic cell death can limit multiplication and virus dissemination in the host. Thus, the mechanisms by which a host organism detects a viral intruder and initiates the apoptotic response are critical to the outcome of the infection for both the host and virus. The cellular inhibitor-of-apoptosis (IAP) proteins are important candidates for sensing virus infection and determining cell fate by virtue of their central position in the apoptosis pathway (reviewed in references 35, 36, and 44). Affirming their importance in regulation of apoptosis, IAPs are encoded by multiple DNA viruses, including baculoviruses, entomopoxviruses, iridoviruses, and African swine fever virus (reviewed in 3). Nonetheless, the molecular mechanisms by which viral IAPs regulate virus-induced apoptosis and how they biochemically differ from cellular IAPs are poorly understood.The IAPs were first discovered in baculoviruses because of their capacity to prevent virus-induced apoptosis and thereby facilitate virus multiplication (4, 8). The baculovirus IAPs bear a striking resemblance to the cellular IAPs carried by the host insects that they infect. Cellular IAPs are a highly conserved family of survival factors that regulate developmental and stress-induced apoptosis, as well as inflammation, the cell cycle, and other signaling processes (35, 38, 44). Importantly, misregulation or overexpression of IAPs is associated with neoplasia and tumor chemoresistance (24, 49). The IAPs are defined by the presence of one or more ∼80-residue baculovirus IAP repeat (BIR) domains. The BIRs consist of a conserved Zn2+-coordinating arrangement of Cys and His residues (CCHC) that interact with diverse proteins, including the cysteinyl aspartate-specific proteases called caspases that execute apoptosis (reviewed in 16 and 37). The antiapoptotic activity of some, but not all, IAPs is derived from their ability to bind and neutralize caspases (reviewed in 35 and 44). The BIRs also interact with proapoptotic factors that contain IAP binding motifs (IBMs). IBM-containing factors have the capacity to bind and dissociate the IAP-caspase complex, thereby liberating active caspases to execute apoptosis (16, 35, 36, 48). Many IAPs, including viral IAPs, also possess a C-terminal RING domain, which is a Zn2+-coordinating motif with E3-ubiquitin ligase activity, which can contribute to antiapoptotic activity (48).The best-studied baculovirus IAP is Op-IAP3, which is encoded by Orgyia pseudotsugata nucleopolyhedrovirus. This small IAP (268 residues) contains two BIRs and a C-terminal RING (Fig. (Fig.1A).1A). Both BIRs are required for Op-IAP3 antiapoptotic activity (19, 50, 53). Truncation of the Op-IAP3 RING creates a loss-of-function dominant inhibitor (19). Op-IAP3''s capacity to form a complex with this RING-lacking (RINGless) dominant inhibitor and with itself suggests that oligomerization is necessary for IAP function. Upon overexpression, Op-IAP3 blocks apoptosis triggered by diverse signals in cells from certain insects and mammals, suggesting that it acts through a conserved mechanism (7, 11, 15, 33, 51, 54, 56). In the baculovirus host moth Spodoptera frugiperda (Lepidoptera: Noctuidae), Op-IAP3 prevents apoptosis by blocking the activation of effector caspases (25, 32, 40). However, in contrast to host insect IAPs, Op-IAP3 fails to inhibit active caspases (45, 51, 54). Thus, the host cell target(s) and the mechanism by which they are neutralized by this viral IAP remain unclear.Open in a separate windowFIG. 1.SfIAP structure and mutagenesis. (A) Viral and cellular IAPs. Viral Op-IAP3 (268 residues) and SfIAP (377 residues) each contain two BIR motifs (black boxes) and an E3 ligase RING domain (cross-hatched box). Each representing a potential start site, four methionines (M1 to M4) exist in the N-terminal leader of SfIAP. (B) SfIAPM4 mutations. SfIAPM4 (281 residues) begins with the M4 methionine. SfIAPM4ΔR (227 residues) lacks the C-terminal RING. Amino acid substitutions of Zn-coordinating residues are indicated. An epitope tag (HA) was inserted at the N terminus. (C) Marker rescue assay. The antiapoptotic activity of wild-type or mutated forms of SfIAPM4 was assayed by virus marker rescue in which replication of p35-deficient vΔp35/lacZ was restored in proportion to the antiapoptotic activity of the mutated Sfiap gene acquired by integration of the SfIAP-encoding plasmid (2). Virus yields were determined by plaque assay using apoptosis-sensitive SF21 cells. Antiapoptotic activity is reported as the ratio of nonapoptotic, lacZ-expressing plaques produced by transfection of the indicated Sfiap to those produced by wild-type Sfiap. Values shown are the averages ± standard deviations obtained from triplicate transfections.Among the cellular IAPs, SfIAP from Spodoptera frugiperda is most closely related to viral Op-IAP3. SfIAP (Fig. (Fig.1A)1A) is 42% identical to Op-IAP3, with a higher degree of amino acid identity localized to its two BIRs and C-terminal RING (20). As the principal IAP in Spodoptera, SfIAP suppresses a constitutive push toward apoptosis (34); ablation of SfIAP leads to immediate apoptosis of cultured Spodoptera cells. Upon overexpression, SfIAP also rescues the multiplication of apoptosis-inducing baculoviruses and can prevent apoptosis in certain mammalian cell lines (20, 26). In contrast to viral Op-IAP3, SfIAP can bind and inhibit caspases, including Spodoptera frugiperda caspase-1 (Sf-caspase-1) and human caspase-9 (20, 45). Thus, despite their structural similarities, there exist fundamental differences in the biochemical activities of these two IAPs. Importantly, SfIAP fails to prevent baculovirus-induced apoptosis when produced at endogenous levels in permissive Spodoptera cells. Thus, it is expected that SfIAP also possesses regulatory motifs that respond to cellular signals triggered upon virus infection.SfIAP provides an unprecedented opportunity to investigate the functional and evolutionary relationships between host and viral IAPs and to test the intriguing hypothesis that viral IAPs were acquired by host gene capture (21). We have investigated the biochemical properties of SfIAP as a means to define its molecular mechanisms and to test its relatedness to viral IAPs. We report here that SfIAP shares many biochemical and functional features with viral IAPs. Like Op-IAP3, overexpressed SfIAP prevented virus-induced apoptosis at a step upstream of caspase activation by a mechanism that required BIR1, BIR2, and the RING. SfIAP formed a complex with itself and with a RINGless dominant inhibitor, suggesting that oligomerization is also required for function of cellular IAPs. Unlike viral IAPs, SfIAP possesses an N-terminal leader, which modulates intracellular SfIAP levels and may respond to apoptotic signals to regulate cell survival. Our data are consistent with a model in which baculoviruses acquired a host cell IAP and modified it for virus-specific needs, thereby increasing virus fitness by preventing virus-induced apoptosis.  相似文献   
995.
Vesicular stomatitis virus (VSV) has long been regarded as a promising recombinant vaccine platform and oncolytic agent but has not yet been tested in humans because it causes encephalomyelitis in rodents and primates. Recent studies have shown that specific tropisms of several viruses could be eliminated by engineering microRNA target sequences into their genomes, thereby inhibiting spread in tissues expressing cognate microRNAs. We therefore sought to determine whether microRNA targets could be engineered into VSV to ameliorate its neuropathogenicity. Using a panel of recombinant VSVs incorporating microRNA target sequences corresponding to neuron-specific or control microRNAs (in forward and reverse orientations), we tested viral replication kinetics in cell lines treated with microRNA mimics, neurotoxicity after direct intracerebral inoculation in mice, and antitumor efficacy. Compared to picornaviruses and adenoviruses, the engineered VSVs were relatively resistant to microRNA-mediated inhibition, but neurotoxicity could nevertheless be ameliorated significantly using this approach, without compromise to antitumor efficacy. Neurotoxicity was most profoundly reduced in a virus carrying four tandem copies of a neuronal mir125 target sequence inserted in the 3′-untranslated region of the viral polymerase (L) gene.Vesicular stomatitis virus (VSV) is a nonsegmented, negative-strand rhabdovirus widely used as a vaccine platform as well as an anticancer therapeutic. While VSV is predominantly a pathogen of livestock (34), it has a very broad species tropism. The cellular tropism of VSV is determined predominantly at postentry steps, since the G glycoprotein of the virus mediates entry into most tissues in nearly all animal species (10).Though viral entry can take place in nearly all cell types, in vivo models of VSV infection have revealed that the virus is highly sensitive to the innate immune response, limiting its pathogenesis (4). VSV is intensively responsive to type I interferon (IFN), as the double-stranded RNA (dsRNA)-dependent PKR (2), the downstream effector of pattern recognition receptors MyD88 (32), and other molecules mediate shutdown of viral translation and allow the adaptive immune response to clear the virus. The vulnerability of the virus to the type I IFN response, typically defective in many cancers, has been exploited to generate tumor-selective replication (49), such that the virus is now poised to enter phase I trials. However, the virus remains potently neurotoxic, causing lethal encephalitis not only in rodent models (7, 22, 53) but also in nonhuman primates (25).VSV very often infiltrates the central nervous system (CNS) through infection of the olfactory nerves (41). When administered intranasally, the virus replicates rapidly in the nasal epithelium and is transmitted to olfactory neurons, from which it then moves retrograde axonally to the brain and replicates robustly, causing neuropathogenesis. While intranasal inoculation does cause neuropathy in mice, neurotoxicity following viral administration also occurs when the virus is delivered intravascularly (47), intraperitoneally (42), and (not surprisingly) intracranially (13). Previously, other groups have modified the VSV genome to be more sensitive to cellular IFNs (49) and have actually encoded IFN in the virus (36). However, the former can result in attenuation of the virus, such that it has reduced anticancer potential, while the latter still results in lethal encephalitis (unpublished results). In order to mitigate the effects of VSV infection on the brain without perturbing the potent oncolytic activity of the virus, we utilized a microRNA (miRNA) targeting paradigm, whereby viral replication is restricted in the brain without altering the tropism of the virus for other tissues.To redirect the tissue tropism of anticancer therapeutics, we (26) and others (11, 14, 55) have previously exploited the tissue-specific expression of cellular miRNAs. miRNAs are ∼22-nucleotide (nt) regulatory RNAs that regulate a diverse and expansive array of cellular activities. Through recognition of sequence-complementary target elements, miRNAs can either translationally suppress or catalytically degrade both cellular (6) and viral (50) RNAs. We have determined that cellular miRNAs can potentially regulate numerous steps of a virus life cycle and that this regulation of the virus by endogenous miRNAs can then abrogate toxicities of replication-competent viruses (27; E. J. Kelly et al., unpublished data).miRNAs are known to be highly upregulated in many different tissues, including (but not limited to) muscle (40), lung (44), liver (15, 44), spleen (44, 46), and kidney (51). In addition, the brain has a number of upregulated miRNAs, with each different subtype of cell having a unique miRNA profile. miR-125 is highly upregulated in all cells in the brain (neurons, astrocytes, and glia cells), while miR-124 is found predominantly in neuronal cells (48). Glial cells and glioblastomas are thought to have decreased expression of miR-128 compared to neurons (17), while miR-134 is particularly abundant in dendrites of neurons in the hippocampus (43). In addition to these miRNAs, the tumor suppressor miRNA let-7 and miRs 9, 26, and 29 (51) are also found to be enriched in the brain, with expression varying not only between different cell types and regions of the brain but also temporally (48).MicroRNAs have previously been exploited to modulate the tissue tropism of nonreplicating lentiviral vectors (8, 9), as well as curbing known toxicities of replication-competent picornaviruses (5, 26), adenoviruses (11), herpes simplex virus 1 (33), and influenza A virus (39). In addition, a recombinant VSV encoding a tumor suppressor target was found to be responsive to sequence-complementary miRNAs in vitro, possibly by affecting expression of the matrix (M) protein (14), and evidence from Dicer-deficient mice suggests that endogenously expressed microRNA targets within the P and L genes of VSV could restrict enhanced pathogenicity of the virus (37). However, in vivo protection from neuropathogenesis by this means has not been demonstrated for VSV.Here we evaluate the efficiencies of different brain-specific miRNAs for shutting down gene expression and extensively characterize the ability of miRNA targeting to attenuate the neurotoxicity of vesicular stomatitis virus in vivo. We constructed and evaluated recombinant VSVs with miRNA target (miRT) insertions at different regions of the viral genome, with special focus upon those affecting viral L expression. In addition, we looked at the regulatory efficiency of different brain-specific miRNAs and the impact of miRT orientation on VSV replication and determined the impact of the virus on oncolytic activity in vivo.  相似文献   
996.
During chronic viral infections, T cells are exhausted due to constant antigen exposure and are associated with enhanced programmed death 1 (PD-1) expression. Deficiencies in the PD-1/programmed death-ligand 1 (PD-L1) pathway are associated with autoimmune diseases, including those of the central nervous system (CNS). To understand the role of PD-1 expression in regulating T-cell immunity in the CNS during chronic infection, we characterized PD-1 expression in cerebrospinal fluid (CSF) and blood of individuals with chronic human immunodeficiency virus type 1 (HIV-1) infection. PD-1 expression was higher on HIV-specific CD8+ T cells than on total CD8+ T cells in both CSF and blood. PD-1 expression on CSF T cells correlated positively with CSF HIV-1 RNA and inversely with blood CD4+ T-cell counts, suggesting that HIV-1 infection drives higher PD-1 expression on CSF T cells. However, in every HIV-positive individual, PD-1 expression was higher on T cells in CSF than on those in blood, despite HIV-1 RNA levels being lower. Among healthy HIV-negative controls, PD-1 expression was higher in CSF than in blood. Furthermore, frequencies of the senescence marker CD57 were lower on CSF T cells than on blood T cells, consistent with our prior observation of enhanced ex vivo functional capacity of CSF T cells. The higher PD-1 expression level on CSF T cells therefore does not reflect cellular exhaustion but may be a mechanism to downregulate immune-mediated tissue damage in the CNS. As inhibition of the PD-1/PD-L1 pathway is pursued as a therapeutic option for viral infections, potential effects of such a blockade on development of autoimmune responses in the CNS should be considered.Programmed death 1 (PD-1; also called CD279) and its ligands, PD-L1 (also called B7-H1 or CD274) and PD-L2 (also known as B7-DC or CD-273), regulate T-cell activation, peripheral tolerance, and autoimmunity (22, 43). PD-1 can be expressed on CD8+ and CD4+ T cells, B cells, natural killer T cells, and activated monocytes. PD-L1 is expressed on various cells, including T and B cells, dendritic cells, macrophages, mast cells, nonhematopoietic cell types (including vascular endothelial cells, pancreatic islet cells, astrocytes, keratinocytes, and microglial cells), and cells in immune privileged sites, including the placenta and the eye (22). PD-L2 expression is inducible and is restricted to dendritic cells, monocytes, macrophages, and mast cells (22). During chronic infections, the PD-1/PD-L1 pathway inhibits antigen-specific T-cell responses (7, 8, 35, 46). In human immunodeficiency virus type 1 (HIV-1)-infected individuals, PD-1 expression on HIV-specific T cells in peripheral blood is upregulated and correlates positively with plasma viremia and inversely with CD4+ T-cell counts (7, 46). PD-1 expression on HIV-specific T cells is also associated with T-cell exhaustion, as defined by a reduced ability to proliferate and produce cytokines (7, 46). Inhibition of the PD-1/PD-L1 pathway augments HIV-specific CD8+ and CD4+ T-cell function, and antiretroviral therapy is associated with a significant reduction of PD-1 expression on HIV-specific T cells in peripheral blood (8).The PD-1/PD-L1 pathway also limits immune-mediated tissue damage that may be caused by overreactive peripheral T cells, especially in immune privileged sites such as the central nervous system (CNS). In 1999, the importance of PD-1 for peripheral tolerance was first suggested by studies which showed that PD1−/− mice develop lupus-like autoimmune diseases (32). In humans, polymorphisms in the PDCD1 gene, which encodes PD-1, have been associated with autoimmune diseases, including lupus, diabetes, rheumatoid arthritis, and multiple sclerosis (20, 21, 25). Upregulation of PD-L1 in multiple sclerosis lesions from human brain tissue suggests a role for the PD-1/PD-L1 pathway in regulating T-cell activation and controlling immunopathological damage (33).The CNS is involved by HIV-1 early during primary infection (6, 13), and approximately 40% of patients who develop advanced AIDS without receiving antiretroviral therapy develop cognitive impairment (6, 13, 38). While HIV-1 proteins gp120 (3, 16) and Tat (30) are directly neurotoxic and may contribute to HIV-associated dementia, detrimental neuropathogenic effects have also been postulated for inflammatory and innate immune cells, especially monocytes/macrophages and T cells (11, 19, 49, 50). Immune responses cause neuropathogenesis during other viral infections, and cytotoxic T lymphocytes can worsen the disease through direct cytotoxicity or release of inflammatory cytokines such as gamma interferon (IFN-γ) (14). However, we recently described higher frequencies of functional HIV-specific CD8+ T cells in cerebrospinal fluid (CSF) than in blood among asymptomatic HIV-positive individuals with little or no HIV-1 RNA in CSF, suggesting that HIV-1-specific CD8+ T cells help to control intrathecal viral replication (40).To understand the role of the PD-1/PD-L1 pathway in regulating T-cell responses during viral infection of the CNS, we characterized PD-1 expression on T cells in CSF and peripheral blood among asymptomatic HIV-positive individuals. We hypothesized that T-cell PD1 expression would be lower in CSF than in blood, since HIV-1 RNA concentrations are lower in CSF than in plasma and the magnitude and breadth of IFN-γ-secreting HIV-specific T cells are greater in CSF than in blood (40). We show that, in CSF, HIV-1 RNA correlates directly with PD-1 expression on CD4+, CD8+, and HIV-specific CD8+ T cells. Unexpectedly, PD-1 expression on all T cells is higher in CSF than in blood in HIV-positive patients and healthy HIV-negative controls. In contrast, expression of the senescence marker CD57 is lower in CSF than in blood. These data suggest that higher PD-1 expression on T cells in CSF may be a mechanism to regulate T-cell immunity in the CNS, rather than indicating T-cell exhaustion, and that this regulation is increased by HIV-1 replication.  相似文献   
997.
Although the function of protein kinase D1 (PKD) in cardiac cells has remained enigmatic, recent work has shown that PKD phosphorylates the nuclear regulators HDAC5/7 (histone deacetylase 5/7) and CREB, implicating this kinase in the development of dysfunction seen in heart failure. Additional studies have shown that PKD also phosphorylates multiple sarcomeric substrates to regulate myofilament function. Initial studies examined PKD through adenoviral vector expression of wild type PKD, constitutively active PKD (caPKD), or dominant negative PKD in cultured adult rat ventricular myocytes. Confocal immunofluorescent images of these cells reveal a predominant distribution of all PKD forms in a non-nuclear, Z-line localized, striated reticular pattern, suggesting the importance of PKD in Ca(2+) signaling in heart. Consistent with an established role of PKD in targeting cardiac troponin I (cTnI), caPKD expression led to a marked decrease in contractile myofilament Ca(2+) sensitivity with an unexpected electrical stimulus dependence to this response. This desensitization was accompanied by stimulus-dependent increases in cTnI phosphorylation in control and caPKD cells with a more pronounced effect in the latter. Electrical stimulation also provoked phosphorylation of regulatory site Ser(916) on PKD. The functional importance of this phospho-Ser(916) event is demonstrated in experiments with a phosphorylation-defective mutant, caPKD-S916A, which is functionally inactive and blocks stimulus-dependent increases in cTnI phosphorylation. Dominant negative PKD expression resulted in sensitization of the myofilaments to Ca(2+) and blocked stimulus-dependent increases in cTnI phosphorylation. Taken together, these data reveal that localized PKD may play a role as a dynamic regulator of Ca(2+) sensitivity of contraction in cardiac myocytes.  相似文献   
998.
Aspartate kinase (AK) and homoserine dehydrogenase (HSD) function as key regulatory enzymes at branch points in the aspartate amino acid pathway and are feedback-inhibited by threonine. In plants the biochemical features of AK and bifunctional AK-HSD enzymes have been characterized, but the molecular properties of the monofunctional HSD remain unexamined. To investigate the role of HSD, we have cloned the cDNA and gene encoding the monofunctional HSD (GmHSD) from soybean. Using heterologously expressed and purified GmHSD, initial velocity and product inhibition studies support an ordered bi bi kinetic mechanism in which nicotinamide cofactor binds first and leaves last in the reaction sequence. Threonine inhibition of GmHSD occurs at concentrations (Ki = 160–240 mm) more than 1000-fold above physiological levels. This is in contrast to the two AK-HSD isoforms in soybean that are sensitive to threonine inhibition (Ki∼150 μm). In addition, GmHSD is not inhibited by other aspartate-derived amino acids. The ratio of threonine-resistant to threonine-sensitive HSD activity in soybean tissues varies and likely reflects different demands for amino acid biosynthesis. This is the first cloning and detailed biochemical characterization of a monofunctional feedback-insensitive HSD from any plant. Threonine-resistant HSD offers a useful biotechnology tool for manipulating the aspartate amino acid pathway to increase threonine and methionine production in plants for improved nutritional content.  相似文献   
999.
The epithelial Na+ channel (ENaC) mediates the rate-limiting step in transepithelial Na+ transport in the distal segments of the nephron and in the lung. ENaC subunits are cleaved by proteases, resulting in channel activation due to the release of inhibitory tracts. Peptides derived from these tracts inhibit channel activity. The mechanism by which these intrinsic inhibitory tracts reduce channel activity is unknown, as are the sites where these tracts interact with other residues within the channel. We performed site-directed mutagenesis in large portions of the predicted periphery of the extracellular region of the α subunit and measured the effect of mutations on an 8-residue inhibitory tract-derived peptide. Our data show that the inhibitory peptide likely binds to specific residues within the finger and thumb domains of ENaC. Pairwise interactions between the peptide and the channel were identified by double mutant cycle experiments. Our data suggest that the inhibitory peptide has a specific peptide orientation within its binding site. Extended to the intrinsic inhibitory tract, our data suggest that proteases activate ENaC by removing residues that bind at the finger-thumb domain interface.  相似文献   
1000.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号