首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   9070篇
  免费   1019篇
  国内免费   3篇
  2023年   51篇
  2022年   153篇
  2021年   293篇
  2020年   142篇
  2019年   186篇
  2018年   224篇
  2017年   213篇
  2016年   360篇
  2015年   574篇
  2014年   565篇
  2013年   577篇
  2012年   758篇
  2011年   774篇
  2010年   495篇
  2009年   400篇
  2008年   562篇
  2007年   567篇
  2006年   432篇
  2005年   419篇
  2004年   429篇
  2003年   359篇
  2002年   347篇
  2001年   96篇
  2000年   84篇
  1999年   88篇
  1998年   90篇
  1997年   51篇
  1996年   63篇
  1995年   41篇
  1994年   37篇
  1993年   25篇
  1992年   41篇
  1991年   49篇
  1990年   31篇
  1989年   31篇
  1988年   26篇
  1987年   19篇
  1986年   36篇
  1985年   30篇
  1984年   35篇
  1983年   25篇
  1982年   28篇
  1981年   38篇
  1980年   29篇
  1979年   20篇
  1978年   22篇
  1977年   17篇
  1976年   19篇
  1975年   14篇
  1968年   14篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
951.
952.
The JNK family members JNK1 and JNK2 regulate tumor growth and are essential for transformation by oncogenes such as constitutively activated Ras. The mechanisms downstream of JNK that regulate cell cycle progression and transformation are unclear. Here we show that inhibition of JNK2, but not JNK1, with either a dominant-negative mutant, a pharmacological inhibitor, or RNA interference caused an accumulation of mammalian cells with 4N DNA content. When observed by immunofluorescence, these cells progressed to metaphase without apparent defects in spindle formation or chromosome alignment to the metaphase plate, suggesting that the 4N accumulation is a result of postmetaphase defects. Consistent with this prediction, when JNK activity was suppressed, we observed defects in central spindle formation and chromosome segregation during anaphase. In contrast, cyclin-dependent kinase 1 activity, cyclin B1 protein, and Polo-like kinase 1 protein turnover remained intact when JNK was inhibited. In addition, continued inhibition of JNK activity did not block reentry into subsequent cell cycles but instead resulted in polyploidy. This evidence suggests that JNK2 functions in maintaining the genomic stability of mammalian cells by signaling that is independent of cyclin-dependent kinase 1/cyclin B1 down-regulation.  相似文献   
953.
Plasmodium falciparum, the causative agent of malaria, relies extensively on glycolysis coupled with homolactic fermentation during its blood-borne stages for energy production. Selective inhibitors of the parasite lactate dehydrogenase (LDH), central to NAD(+) regeneration, therefore potentially provide a route to new antimalarial drugs directed against a novel molecular target. A series of heterocyclic, azole-based compounds are described that preferentially inhibit P. falciparum LDH at sub-micromolar concentrations, typically at concentrations about 100-fold lower than required for human lactate dehydrogenase inhibition. Crystal structures show these competitive inhibitors form a network of interactions with amino acids within the active site of the enzyme, stacking alongside the nicotinamide ring of the NAD(+) cofactor. These compounds display modest activity against parasitized erythrocytes, including parasite strains with known resistance to existing anti-malarials and against Plasmodium berghei in BALB/c mice. Initial toxicity data suggest the azole derivatives have generally low cytotoxicity, and preliminary pharmoco-kinetic data show favorable bioavailability and circulation times. These encouraging results suggest that further enhancement of these structures may yield candidates suitable for consideration as new therapeutics for the treatment of malaria. In combination these studies also provide strong support for the validity of targeting the Plasmodium glycolytic pathway and, in particular, LDH in the search for novel anti-malarials.  相似文献   
954.
Sla1 and Rvs167 are yeast proteins required for receptor internalization and organization of the actin cytoskeleton. Here we provide evidence that Sla1 and Rvs167 are orthologues of the mammalian CIN85 and endophilin proteins, respectively, which are required for ligand-stimulated growth factor receptor internalization. Sla1 is similar in domain structure to CIN85 and binds directly to the endophilin-like Rvs167. Akin to CIN85, Sla1 interacts with synaptojanins and a ubiquitin ligase that regulates endocytosis. This ubiquitin ligase, Rsp5, binds directly to both Sla1 and Rvs167. The interaction between Rsp5 and Rvs167 is mediated through Rsp5 WW domains and PXY motifs in the central Gly-Pro-Ala-rich domain of Rvs167. Rvs167 PXY motifs are required for Rsp5-dependent monoubiquitination of Rvs167 on Lys481 in the Src homology 3 (SH3) domain. Mutation of Lys481 --> Arg causes cells to grow slowly on medium containing 1 M NaCl, although this phenotype is not due to the defect in ubiquitination caused by the K481R mutation. We propose that Rsp5 interaction with Sla1-Rvs167 promotes Rvs167 ubiquitination and regulates activity of this protein complex. Rvs167 ubiquitination is not required for general function of Rvs167, but may control specific Rvs167 SH3 domain-protein interactions or negatively regulate SH3 domain activity.  相似文献   
955.
Y-family DNA polymerases lack some of the mechanisms that replicative DNA polymerases employ to ensure fidelity, resulting in higher error rates during replication of undamaged DNA templates and the ability to bypass certain aberrant bases, such as those produced by exposure to carcinogens, including benzo[a]pyrene (BP). A tumorigenic metabolite of BP, (+)-anti-benzo-[a]pyrene diol epoxide, attacks DNA to form the major 10S (+)-trans-anti-[BP]-N(2)-dG adduct, which has been shown to be mutagenic in a number of prokaryotic and eukaryotic systems. The 10S (+)-trans-anti-[BP]-N(2)-dG adduct can cause all three base substitution mutations, and the SOS response in Escherichia coli increases bypass of bulky adducts, suggesting that Y-family DNA polymerases are involved in the bypass of such lesions. Dpo4 belongs to the DinB branch of the Y-family, which also includes E. coli pol IV and eukaryotic pol kappa. We carried out primer extension assays in conjunction with molecular modeling and molecular dynamics studies in order to elucidate the structure-function relationship involved in nucleotide incorporation opposite the bulky 10S (+)-trans-anti-[BP]-N(2)-dG adduct by Dpo4. Dpo4 is able to bypass the 10S (+)-trans-anti-[BP]-N(2)-dG adduct, albeit to a lesser extent than unmodified guanine, and the V(max) values for insertion of all four nucleotides opposite the adduct by Dpo4 are similar. Computational studies suggest that 10S (+)-trans-anti-[BP]-N(2)-dG can be accommodated in the active site of Dpo4 in either the anti or syn conformation due to the limited protein-DNA contacts and the open nature of both the minor and major groove sides of the nascent base pair, which can contribute to the promiscuous nucleotide incorporation opposite this lesion.  相似文献   
956.
Glutathione synthetase (GS) catalyzes the ATP-dependent formation of the ubiquitous peptide glutathione from gamma-glutamylcysteine and glycine. The bacterial and eukaryotic GS form two distinct families lacking amino acid sequence homology. Moreover, the detailed kinetic mechanism of the bacterial and the eukaryotic GS remains unclear. Here we have overexpressed Arabidopsis thaliana GS (AtGS) in an Escherichia coli expression system and purified the recombinant enzyme for biochemical characterization. AtGS is functional as a homodimeric protein with steady-state kinetic properties similar to those of other eukaryotic GS. The kinetic mechanism of AtGS was investigated using initial velocity methods and product inhibition studies. The best fit of the observed data was to the equation for a random Ter-reactant mechanism in which dependencies between the binding of some substrate pairs were preferred. The binding of either ATP or gamma-glutamylcysteine increased the binding affinity of AtGS for the other substrate by 10-fold. Likewise, the binding of ATP or glycine increased binding affinity for the other ligand by 3.5-fold. In contrast, binding of either glycine or gamma-glutamylcysteine causes a 6.7-fold decrease in binding affinity for the second molecule. Product inhibition studies suggest that ADP is the last product released from the enzyme. Overall, these observations are consistent with a random Ter-reactant mechanism for the eukaryotic GS in which the binding order of certain substrates is kinetically preferred for catalysis.  相似文献   
957.
MUC1 is a mucin-like transmembrane protein found on the apical surface of many epithelia. Because aberrant intracellular localization of MUC1 in tumor cells correlates with an aggressive tumor and a poor prognosis for the patient, experiments were designed to characterize the features that modulate MUC1 membrane trafficking. By following [(35)S]Met/Cys-labeled MUC1 in glycosylation-defective Chinese hamster ovary cells, we found previously that truncation of O-glycans on MUC1 inhibited its surface expression and stimulated its internalization by clathrin-mediated endocytosis. To identify signals for MUC1 internalization that are independent of its glycosylation state, the ectodomain of MUC1 was replaced with that of Tac, and chimera endocytosis was measured by the same protocol. Endocytosis of the chimera was significantly faster than for MUC1, indicating that features of the highly extended ectodomain inhibit MUC1 internalization. Analysis of truncation mutants and tyrosine mutants showed that Tyr(20) and Tyr(60) were both required for efficient endocytosis. Mutation of Tyr(20) significantly blocked coimmunoprecipitation of the chimera with AP-2, indicating that Y(20)HPM is recognized as a YXXphi motif by the mu2 subunit. The tyrosine-phosphorylated Y(60)TNP was previously identified as an SH2 site for Grb2 binding, and we found that mutation of Tyr(60) blocked coimmunoprecipitation of the chimera with Grb2. This is the first indication that Grb2 plays a significant role in the endocytosis of MUC1.  相似文献   
958.
We observed evolutionary conservation of canonical nuclear localization signal sequences (K(K/R)X(K/R)) in the C-terminal polybasic regions (PBRs) of some Rac and Rho isoforms. Canonical D-box sequences (RXXL), which target proteins for proteasome-mediated degradation, are also evolutionarily conserved near the PBRs of these small GTPases. We show that the Rac1 PBR (PVKKRKRK) promotes Rac1 nuclear accumulation, whereas the RhoA PBR (RRGKKKSG) keeps RhoA in the cytoplasm. A mutant Rac1 protein named Rac1 (pbrRhoA), in which the RhoA PBR replaces the Rac1 PBR, has greater cytoplasmic localization, enhanced resistance to proteasome-mediated degradation, and higher protein levels than Rac1. Mutating the D-box by substituting alanines at amino acids 174 and 177 significantly increases the protein levels of Rac1 but not Rac1(pbrRhoA). These results suggest that Rac1 (pbrRhoA) is more resistant than Rac1 to proteasome-mediated degradative pathways involving the D-box. The cytoplasmic localization of Rac1(pbrRhoA) provides the most obvious reason for its resistance to proteasome-mediated degradation, because we show that Rac1(pbrRhoA) does not greatly differ from Rac1 in its ability to stimulate membrane ruffling or to interact with SmgGDS and IQGAP1-calmodulin complexes. These findings support the model that nuclear localization signal sequences in the PBR direct Rac1 to the nucleus, where Rac1 participates in signaling pathways that ultimately target it for degradation.  相似文献   
959.
Previous molecular phylogenetic analyses have revealed that elements of the former families Malvaceae sensu stricto and Bombacaceae together form a well-supported clade that has been named Malvatheca. Within Malvatheca, two major lineages have been observed; one, Bombacoideae, corresponds approximately to the palmate-leaved Bombacaceae, and the other, Malvoideae, includes the traditional Malvaceae (the mallows or Eumalvoideae). However, the composition of these two groups and their relationships to other elements of Malvatheca remain a source of uncertainty. Sequence data from two plastid regions, ndhF and trnK/matK, from 34 exemplars of Malvatheca and six outgroups were analyzed. Parsimony, likelihood, and Bayesian analyses of the sequence data provided a well-resolved phylogeny except that relationships among five lineages at the base of Malvatheca are poorly resolved. Nonetheless, a 6-bp insertion in matK suggests that Fremontodendreae is sister to the remainder of Malvatheca. Our results suggest that the Malvoideae originated in the Neotropics and that a mangrove taxon dispersed across the Pacific from South America to Australasia and later radiated out of Australasia to give rise to the ca. 1700 living species of Eumalvoideae. Local clock analyses imply that the plastid genome underwent accelerated molecular evolution coincident with the dispersal out of the Americas and again with the radiation into the three major clades of Eumalvoideae.  相似文献   
960.
The fluorescence-based thermal shift assay is a general method for identification of inhibitors of target proteins from compound libraries. Using an environmentally sensitive fluorescent dye to monitor protein thermal unfolding, the ligand-binding affinity can be assessed from the shift of the unfolding temperature (Delta Tm) obtained in the presence of ligands relative to that obtained in the absence of ligands. In this article, we report that the thermal shift assay can be conducted in an inexpensive, commercially available device for temperature control and fluorescence detection. The binding affinities obtained from thermal shift assays are compared with the binding affinities measured by isothermal titration calorimetry and with the IC(50) values from enzymatic assays. The potential pitfalls in the data analysis of thermal shift assays are also discussed.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号