首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   7824篇
  免费   826篇
  国内免费   3篇
  8653篇
  2024年   4篇
  2023年   55篇
  2022年   142篇
  2021年   271篇
  2020年   134篇
  2019年   177篇
  2018年   205篇
  2017年   193篇
  2016年   338篇
  2015年   525篇
  2014年   522篇
  2013年   537篇
  2012年   694篇
  2011年   716篇
  2010年   459篇
  2009年   357篇
  2008年   502篇
  2007年   505篇
  2006年   381篇
  2005年   375篇
  2004年   385篇
  2003年   328篇
  2002年   299篇
  2001年   56篇
  2000年   39篇
  1999年   50篇
  1998年   72篇
  1997年   31篇
  1996年   44篇
  1995年   25篇
  1994年   23篇
  1993年   16篇
  1992年   16篇
  1991年   16篇
  1990年   13篇
  1989年   8篇
  1987年   5篇
  1986年   8篇
  1985年   11篇
  1984年   17篇
  1983年   8篇
  1982年   9篇
  1981年   21篇
  1980年   13篇
  1979年   8篇
  1978年   10篇
  1977年   6篇
  1976年   5篇
  1975年   3篇
  1968年   3篇
排序方式: 共有8653条查询结果,搜索用时 15 毫秒
151.
New biomass crop hybrids for bioeconomic expansion require yield projections to determine their potential for strategic land use planning in the face of global challenges. Our biomass growth simulation incorporates radiation interception and conversion efficiency. Models often use leaf area to predict interception which is demanding to determine accurately, so instead we use low-cost rapid light interception measurements using a simple laboratory-made line ceptometer and relate the dynamics of canopy closure to thermal time, and to measurements of biomass. We apply the model to project the European biomass potentials of new market-ready hybrids for 2020–2030. Field measurements are easier to collect, the calibration is seasonally dynamic and reduces influence of weather variation between field sites. The model obtained is conservative, being calibrated by crops of varying establishment and varying maturity on less productive (marginal) land. This results in conservative projections of miscanthus hybrids for 2020–2030 based on 10% land use conversion of the least (productive) grassland and arable for farm diversification, which show a European potential of 80.7–89.7 Mt year−1 biomass, with potential for 1.2–1.3 EJ year−1 energy and 36.3–40.3 Mt year−1 carbon capture, with seeded Miscanthus sacchariflorus × sinensis displaying highest yield potential. Simulated biomass projections must be viewed in light of the field measurements on less productive land with high soil water deficits. We are attempting to model the results from an ambitious and novel project combining new hybrids across Europe with agronomy which has not been perfected on less productive sites. Nevertheless, at the time of energy sourcing issues, seed-propagated miscanthus hybrids for the upscaled provision of bioenergy offer an alternative source of renewable energy. If European countries provide incentives for growers to invest, seeded hybrids can improve product availability and biomass yields over the current commercial miscanthus variety.  相似文献   
152.
Background aimsThe Quantum® Cell Expansion System (Quantum; Terumo BCT, Inc, Lakewood, CO, USA) is a novel hollow fiber-based device that automates and closes the cell culture process, reducing labor intensive tasks such as manual cell culture feeding and harvesting. The manual cell selection and expansion processes for the production of clinical-scale quantities of bone marrow-derived human mesenchymal stromal cells (BM-hMSCs) have been successfully translated onto the Quantum platform previously. The formerly static, manual, in vitro process performed primarily on tissue culture polystyrene substrates may raise the question of whether BM-hMSCs cultured on a hollow fiber platform yields comparable cell quality.MethodsA rigorous battery of assays was used to determine the genetic stability of BM-hMSCs selected and produced with the Quantum. In this study, genetic stability was determined by assessing spectral karyotype, micronucleus formation and tumorigenicity to resolve chromosomal aberrations in the stem cell population. Cell phenotype, adherent growth kinetics and tri-lineage differentiation were also evaluated. HMSC bone marrow aspirates, obtained from three approved donors, were expanded in parallel using T225 culture flasks and the Quantum.ResultsBM-hMSCs harvested from the Quantum demonstrated immunophenotype, morphology and tri-lineage differentiation capacity characteristics consistent with the International Society of Cell Therapy standard for hMSCs. Cell populations showed no malignant neoplastic formation in athymic mice 60 days post-transplant, no clonal chromosomal aberrations were observed and no DNA damage was found as measured by micronucleus formation.ConclusionsQuantum-produced BM-hMSCs are of comparable quality and demonstrate analogous genetic stability to BM-hMSCs cultured on tissue culture polystyrene substrates.  相似文献   
153.
Cigarette smoke has been directly implicated in the disease pathogenesis of a plethora of different human cancer subtypes, including breast cancers. The prevailing view is that cigarette smoke acts as a mutagen and DNA damaging agent in normal epithelial cells, driving tumor initiation. However, its potential negative metabolic effects on the normal stromal microenvironment have been largely ignored. Here, we propose a new mechanism by which carcinogen-rich cigarette smoke may promote cancer growth, by metabolically “fertilizing” the host microenvironment. More specifically, we show that cigarette smoke exposure is indeed sufficient to drive the onset of the cancer-associated fibroblast phenotype via the induction of DNA damage, autophagy and mitophagy in the tumor stroma. In turn, cigarette smoke exposure induces premature aging and mitochondrial dysfunction in stromal fibroblasts, leading to the secretion of high-energy mitochondrial fuels, such as L-lactate and ketone bodies. Hence, cigarette smoke induces catabolism in the local microenvironment, directly fueling oxidative mitochondrial metabolism (OXPHOS) in neighboring epithelial cancer cells, actively promoting anabolic tumor growth. Remarkably, these autophagic-senescent fibroblasts increased breast cancer tumor growth in vivo by up to 4-fold. Importantly, we show that cigarette smoke-induced metabolic reprogramming of the fibroblastic stroma occurs independently of tumor neo-angiogenesis. We discuss the possible implications of our current findings for the prevention of aging-associated human diseases and, especially, common epithelial cancers, as we show that cigarette smoke can systemically accelerate aging in the host microenvironment. Finally, our current findings are consistent with the idea that cigarette smoke induces the “reverse Warburg effect,” thereby fueling “two-compartment tumor metabolism” and oxidative mitochondrial metabolism in epithelial cancer cells.  相似文献   
154.
The utilization of inorganic carbon by three species of marine diatom, Skeletonema costatum (Grev.) Cleve. Ditylum brightwellii (West) Grun., and Chaetoceros calcitrans Paulsen was investigated using an inorganic carbon isotopic disequilibnum technique and inorganic carbon dose-response curves. Stable carbon isotope data of the diatoms are also presented. Observed rates of photosynthetic oxygen evolution were greater than could be accounted for by the theoretical rate of CO2 supply from the uncatalyzed dehydration of HCO3? in the external medium, suggesting use of HCO3? as an inorganic carbon source. Data from the isotopic disequilibrium experiment demonstrate the use of both HCO3? and CO2 for photosynthesis. Carbon isotope discrimination values support the use of HCO3? by the diatoms.  相似文献   
155.
The binding interactions of small molecules with carbonic anhydrase II were used as model systems to compare the reaction constants determined from surface- and solution-based biophysical methods. Interaction data were collected for two arylsulfonamide compounds, 4-carboxybenzenesulfonamide (CBS) and 5-dimethyl-amino-1-naphthalene-sulfonamide (DNSA), binding to the enzyme using surface plasmon resonance, isothermal titration calorimetry, and stopped-flow fluorescence. We demonstrate that when the surface plasmon resonance biosensor experiments are performed with care, the equilibrium, thermodynamic, and kinetic constants determined from this surface-based technique match those acquired in solution. These results validate the use of biosensor technology to collect reliable data on small molecules binding to immobilized macromolecular targets. Binding kinetics were shown to provide more detailed information about complex formation than equilibrium constants alone. For example, although carbonic anhydrase II bound DNSA with twofold higher affinity than CBS, kinetic analysis revealed that CBS had a fourfold slower dissociation rate. Analysis of the binding and transition state thermodynamics also revealed significant differences in the enthalpy and entropy of complex formation. The lack of labeling requirements, high information content, and high throughput of surface plasmon resonance biosensors will make this technology an important tool for characterizing the interactions of small molecules with enzymes and receptors.  相似文献   
156.
157.
为大量制备β-NGF,构建了一种稳定、高效表达重组人神经生长因子(Recombinant human nerve growth factor,rh-β-NGF)的真核表达载体及含该重组载体的HEK293细胞株。首先,构建重组质粒p CMV-β-NGF-IRES-dhfr并转染至HEK293细胞系,用MTX加压筛选和有限稀释法进行选择,获得高效表达rh-β-NGF的单克隆重组细胞株;随后逐步降低血清培养,最终使细胞株完全适应无血清培养基并稳定表达rh-β-NGF;SDS-PAGE分析该表达产物,可见相对分子质量约13 k Da的条带,纯度大于50%,经质谱法测定得到其肽图谱与理论序列完全匹配,接着利用离子交换层析和分子筛层析纯化rh-β-NGF;最后进行重组细胞株表达效率和表达稳定性检测,表明重组细胞株可稳定、高效表达rh-β-NGF,其分泌效率大于20 pg/(cell?d),并能诱导PC12细胞的分化,具有良好的生物学活性。  相似文献   
158.
Novel strategies are necessary to improve chemotherapy response in advanced and recurrent endometrial cancer. Here, we demonstrate that terpenoids present in the Steam Distilled Extract of Ginger (SDGE) are potent inhibitors of proliferation of endometrial cancer cells. SDGE, isolated from six different batches of ginger rhizomes, consistently inhibited proliferation of the endometrial cancer cell lines Ishikawa and ECC-1 at IC50 of 1.25 µg/ml. SDGE also enhanced the anti-proliferative effect of radiation and cisplatin. Decreased proliferation of Ishikawa and ECC-1 cells was a direct result of SDGE-induced apoptosis as demonstrated by FITC-Annexin V staining and expression of cleaved caspase 3. GC/MS analysis identified a total of 22 different terpenoid compounds in SDGE, with the isomers neral and geranial constituting 30–40%. Citral, a mixture of neral and geranial inhibited the proliferation of Ishikawa and ECC-1 cells at an IC50 10 µM (2.3 µg/ml). Phenolic compounds such as gingerol and shogaol were not detected in SDGE and 6-gingerol was a weaker inhibitor of the proliferation of the endometrial cancer cells. SDGE was more effective in inducing cancer cell death than citral, suggesting that other terpenes present in SDGE were also contributing to endometrial cancer cell death. SDGE treatment resulted in a rapid and strong increase in intracellular calcium and a 20–40% decrease in the mitochondrial membrane potential. Ser-15 of p53 was phosphorylated after 15 min treatment of the cancer cells with SDGE. This increase in p53 was associated with 90% decrease in Bcl2 whereas no effect was observed on Bax. Inhibitor of p53, pifithrin-α, attenuated the anti-cancer effects of SDGE and apoptosis was also not observed in the p53neg SKOV-3 cells. Our studies demonstrate that terpenoids from SDGE mediate apoptosis by activating p53 and should be therefore be investigated as agents for the treatment of endometrial cancer.  相似文献   
159.
Understanding how tropical tree phenology (i.e., the timing and amount of seed and leaf production) responds to climate is vital for predicting how climate change may alter ecological functioning of tropical forests. We examined the effects of temperature, rainfall, and photosynthetically active radiation (PAR) on seed phenology of four dominant species and community-level leaf phenology in a montane wet forest on the island of Hawaiʻi using monthly data collected over ~ 6 years. We expected that species phenologies would be better explained by variation in temperature and PAR than rainfall because rainfall at this site is not limiting. The best-fit model for all four species included temperature, rainfall, and PAR. For three species, including two foundational species of Hawaiian forests (Acacia koa and Metrosideros polymorpha), seed production declined with increasing maximum temperatures and increased with rainfall. Relationships with PAR were the most variable across all four species. Community-level leaf litterfall decreased with minimum temperatures, increased with rainfall, and showed a peak at PAR of ~ 400 μmol/m2s−1. There was considerable variation in monthly seed and leaf production not explained by climatic factors, and there was some evidence for a mediating effect of daylength. Thus, the impact of future climate change on this forest will depend on how climate change interacts with other factors such as daylength, biotic, and/or evolutionary constraints. Our results nonetheless provide insight into how climate change may affect different species in unique ways with potential consequences for shifts in species distributions and community composition.  相似文献   
160.
Recently identified molecular targets in pulmonary artery hypertension (PAH) include sphingosine-1-phosphate (S1P) and zinc transporter ZIP12 signaling. This study sought to determine linkages between these pathways, and with BMPR2 signaling. Lung tissues from a rat model of monocrotaline-induced PAH and therapeutic treatment with bone marrow–derived endothelial-like progenitor cells transduced to overexpress BMPR2 were studied. Multifluorescence quantitative confocal microscopy (MQCM) was applied for analysis of protein expression and localization of markers of vascular remodeling (αSMA and BMPR2), parameters of zinc homeostasis (zinc transporter SLC39A/ZIP family members 1, 10, 12 and 14; and metallothionein MT3) and S1P extracellular signaling (SPHK1, SPNS2, S1P receptor isoforms 1, 2, 3, 5) in 20–200 µm pulmonary microvessels. ZIP12 expression in whole lung tissue lysates was assessed by western blot. Spearman nonparametric correlations between MQCM readouts and hemodynamic parameters, Fulton index (FI), and right ventricular systolic pressure (RVSP) were measured. In line with PAH status, pulmonary microvessels in monocrotaline-treated animals demonstrated significant (p < .05, n = 6 per group) upregulation of αSMA (twofold) and downregulation of BMPR2 (20%). Upregulated ZIP12 (92%), MT3 (57.7%), S1PR2 (54.8%), and S1PR3 (30.3%) were also observed. Significant positive and negative correlations were demonstrated between parameters of zinc homeostasis (ZIP12, MT3), S1P signaling (S1PRs, SPNS2), and vascular remodeling (αSMA, FI, RVSP). MQCM and western blot analysis showed that monocrotaline-induced ZIP12 upregulation could be partially negated by BMPR2-targeted therapy. Our results indicate that altered zinc transport/storage and S1P signaling in the monocrotaline-induced PAH rat model are linked to each other, and could be alleviated by BMPR2-targeted therapy.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号