全文获取类型
收费全文 | 8743篇 |
免费 | 986篇 |
国内免费 | 3篇 |
专业分类
9732篇 |
出版年
2023年 | 56篇 |
2022年 | 145篇 |
2021年 | 283篇 |
2020年 | 138篇 |
2019年 | 184篇 |
2018年 | 220篇 |
2017年 | 202篇 |
2016年 | 356篇 |
2015年 | 548篇 |
2014年 | 561篇 |
2013年 | 589篇 |
2012年 | 751篇 |
2011年 | 789篇 |
2010年 | 492篇 |
2009年 | 389篇 |
2008年 | 548篇 |
2007年 | 550篇 |
2006年 | 435篇 |
2005年 | 417篇 |
2004年 | 428篇 |
2003年 | 368篇 |
2002年 | 338篇 |
2001年 | 84篇 |
2000年 | 63篇 |
1999年 | 75篇 |
1998年 | 85篇 |
1997年 | 38篇 |
1996年 | 60篇 |
1995年 | 34篇 |
1994年 | 32篇 |
1993年 | 28篇 |
1992年 | 39篇 |
1991年 | 36篇 |
1990年 | 40篇 |
1989年 | 20篇 |
1988年 | 11篇 |
1987年 | 13篇 |
1986年 | 23篇 |
1985年 | 23篇 |
1984年 | 25篇 |
1983年 | 14篇 |
1982年 | 21篇 |
1981年 | 27篇 |
1980年 | 19篇 |
1979年 | 18篇 |
1978年 | 18篇 |
1977年 | 14篇 |
1976年 | 14篇 |
1975年 | 12篇 |
1974年 | 9篇 |
排序方式: 共有9732条查询结果,搜索用时 15 毫秒
81.
82.
Microtubules are dynamic polymers that participate in multiple cellular processes such as vesicular transport and cell division. Microtubule dynamics alter dramatically during the cell cycle. An excellent system to study microtubule dynamics is Xenopus egg extracts since it is a system that is open to manipulation. The extracts can be cycled between mitosis and interphase allowing the study of microtubules in these phases as well as during cell cycle transitions. Here, we provide simple assays to study microtubules in extracts and in vitro using purified components. Protocols are provided for the purification of frog tubulin, microtubule pelleting from extracts and in vitro, assembly of microtubule structures in extracts, and isolation of microtubule-associated proteins from extract. These methods can be used to analyze the effect of a protein of interest on the microtubule cytoskeleton. 相似文献
83.
Abstract We investigated how insects use wax as a defence against visual predators, using a New Zealand salticid species, Marpissa marina, as the predator and Eriosoma lanigerum, an aphid that covers itself with wax, as the prey. For live‐prey testing, the predator was presented with two aphids, one with its wax covering intact and one with its wax removed. The predator ate more of the waxless than wax‐covered aphids. The predators were presented with two lures at a time: (1) one that was fully covered with wax (hid the aphid's head) compared with one that was without wax (waxless) or (2) one that was fully covered with wax compared with one that was only partially covered with wax (the head of the prey exposed), or (3) one that was waxless compared with one that was partially covered with wax. The predators stalked waxless prey more often than they stalked prey that was fully or partially covered with wax. When wax only partially covered the prey (i.e., when the prey's head was left exposed), the predator more often stalked than when the insect was fully covered. These findings suggest that the aphid's wax covering functions in part to hide prey‐identification cues from vision‐guided predators. 相似文献
84.
Nina Wale Rebecca C. Fuller Snke Johnsen McKenna L. Turrill Meghan. A. Duffy 《Ecology and evolution》2021,11(24):18591
Predators can strongly influence disease transmission and evolution, particularly when they prey selectively on infected hosts. Although selective predation has been observed in numerous systems, why predators select infected prey remains poorly understood. Here, we use a mathematical model of predator vision to test a long‐standing hypothesis about the mechanistic basis of selective predation in a Daphnia–microparasite system, which serves as a model for the ecology and evolution of infectious diseases. Bluegill sunfish feed selectively on Daphnia infected by a variety of parasites, particularly in water uncolored by dissolved organic carbon. The leading hypothesis for selective predation in this system is that infection‐induced changes in the transparency of Daphnia render them more visible to bluegill. Rigorously evaluating this hypothesis requires that we quantify the effect of infection on the visibility of prey from the predator''s perspective, rather than our own. Using a model of the bluegill visual system, we show that three common parasites, Metschnikowia bicuspidata, Pasteuria ramosa, and Spirobacillus cienkowskii, decrease the transparency of Daphnia, rendering infected Daphnia darker against a background of bright downwelling light. As a result of this increased brightness contrast, bluegill can see infected Daphnia at greater distances than uninfected Daphnia—between 19% and 33% further, depending on the parasite. Pasteuria and Spirobacillus also increase the chromatic contrast of Daphnia. These findings lend support to the hypothesis that selective predation by fish on infected Daphnia could result from the effects of infection on Daphnia''s visibility. However, contrary to expectations, the visibility of Daphnia was not strongly impacted by water color in our model. Our work demonstrates that models of animal visual systems can be useful in understanding ecological interactions that impact disease transmission. 相似文献
85.
86.
Marie E. Portuallo David Y. Lu Gretchen M. Alicea Joel Bolling Rebecca Lee Jennifer McQuade Allison Betof Warner Michael Davies Ashani Weeraratna Jessie Villanueva Vito W. Rebecca 《Pigment cell & melanoma research》2023,36(5):441-447
The inaugural Diversity and Inclusion in Science Session was held during the 2021 Society for Melanoma Research (SMR) congress. The goal of the session was to discuss diversity, equity, and inclusion in the melanoma research community and strategies to promote the advancement of underrepresented melanoma researchers. An international survey was conducted to assess the diversity, equity, and inclusion (DEI) climate among researchers and clinicians within the Society for Melanoma Research (SMR). The findings suggest there are feelings and experiences of inequity, bias, and harassment within the melanoma community that correlate with one's gender, ethnic/racial group, and/or geographic location. Notably, significant reports of inequity in opportunity, discrimination, and sexual harassment demonstrate there is much work remaining to ensure all scientists in our community experience an academic workplace culture built on mutual respect, fair access, inclusion, and equitable opportunity. 相似文献
87.
Niclas U. Lundsgaard Coen Hird Kathleen A. Doody Craig E. Franklin Rebecca L. Cramp 《Global Change Biology》2023,29(14):3857-3868
Ecological carryover effects, or delayed effects of the environment on an organism's phenotype, are central predictors of individual fitness and a key issue in conservation biology. Climate change imposes increasingly variable environmental conditions that may be challenging to early life-history stages in animals with complex life histories, leading to detrimental physiological and fitness effects in later life. Yet, the latent nature of carryover effects, combined with the long temporal scales over which they can manifest, means that this phenomenon remains understudied and is often overlooked in short-term studies limited to single life-history stages. Herein, we review evidence for the physiological carryover effects induced by elevated ultraviolet radiation (UVR; 280–400 nm) as a potential contributor to recent amphibian population declines. UVR exposure causes a suite of molecular, cellular and physiological consequences known to underpin carryover effects in other taxa, but there is a lack of research linking embryonic and larval UVR exposures to fitness consequences post-metamorphosis in amphibians. We propose that the key impacts of UVR on disease-related amphibian declines are facilitated through carryover effects that bridge embryonic and larval UVR exposure with potential increased disease susceptibility post-metamorphosis. We conclude by identifying a practical direction for the study of ecological carryover effects in amphibians that could guide future ecological research in the broader field of conservation physiology. Only by addressing carryover effects can many of the mechanistic links between environmental change and population declines be elucidated. 相似文献
88.
Tibor Kiss Krisztina Balla Ottó Veisz László Láng Zoltán Bedő Simon Griffiths Peter Isaac Ildikó Karsai 《Molecular breeding : new strategies in plant improvement》2014,34(2):297-310
Heading of cereals is determined by complex genetic and environmental factors in which genes responsible for vernalization and photoperiod sensitivity play a decisive role. Our aim was to use diagnostic molecular markers to determine the main allele types in VRN-A1, VRN-B1, VRN-D1, PPD-B1 and PPD-D1 in a worldwide wheat collection of 683 genotypes and to investigate the effect of these alleles on heading in the field. The dominant VRN-A1, VRN-B1 and VRN-D1 alleles were present at a low frequency. The PPD-D1a photoperiod-insensitive allele was carried by 57 % of the cultivars and was most frequent in Asian and European cultivars. The PPD-B1 photoperiod-insensitive allele was carried by 22 % of the genotypes from Asia, America and Europe. Nine versions of the PPD-B1-insensitive allele were identified based on gene copy number and intercopy structure. The allele compositions in PPD-D1, PPD-B1 and VRN-D1 significantly influenced heading and together explained 37.5 % of the phenotypic variance. The role of gene model increased to 39.1 % when PPD-B1 intercopy structure was taken into account instead of overall PPD-B1 type (sensitive vs. insensitive). As a single component, PPD-D1 had the most important role (28.0 % of the phenotypic variance), followed by PPD-B1 (12.3 % for PPD-B1_overall, and 15.1 % for PPD-B1_intercopy) and VRN-D1 (2.2 %). Significant gene interactions were identified between the marker alleles within PPD-B1 and between VRN-D1 and the two PPD1 genes. The earliest heading genotypes were those with the photoperiod-insensitive allele in PPD-D1 and PPD-B1, and with the spring allele for VRN-D1 and the winter alleles for VRN-A1 and VRN-B1. This combination could only be detected in genotypes from Southern Europe and Asia. Late-heading genotypes had the sensitivity alleles for both PPD1 genes, regardless of the allelic composition of the VRN1 genes. There was a 10-day difference in heading between the earliest and latest groups under field conditions. 相似文献
89.
Ovine trophoblast protein-one inhibits development of endometrial responsiveness to oxytocin in ewes
In experiment (Exp) 1, 12 cyclic ewes had catheters placed into each uterine horn on Day 7 (estrus = Day 0). On Days 11-15, 6 ewes received twice-daily intrauterine infusions of 1.5 mg serum protein (SP) into each uterine horn and 6 ewes received infusions of 1.08 mg SP + 0.42 mg ovine conceptus secretory proteins (oCSP) containing 25 micrograms ovine trophoblast protein-one (oTP-1) as determined by radioimmunoassay (25-35% bioactive by antiviral assay). SP-infused and oCSP-infused ewes had similar plasma 13,14-dihydro-15-keto prostaglandin F2 alpha (PGF2 alpha) profiles in response to oxytocin on Day 11, but SP ewes became more responsive (p less than 0.01) to oxytocin on Days 13 and 15 than oCSP ewes. SP ewes also had greater incorporation of [3H]inositol into inositol trisphosphate (IP3) (+3449%, p less than 0.01) and total inositol phosphate (IP) (+760%, p less than 0.08), in response to oxytocin, than did oCSP ewes (+553 and +168% for IP3 and total IP, respectively) in endometrium collected at ovariectomy/hysterectomy on Day 16. Mean CL weights on Day 16 and mean concentrations of progesterone in plasma collected at 12-h intervals on Days 6-16 were not different for SP and oCSP ewes, but concentrations of progesterone were lower (p less than 0.05) in SP ewes on Days 15-16 than for oCSP ewes. These results indicate that oTP-1 may prevent luteolysis by inhibiting development of endometrial responsiveness to oxytocin and, therefore, reduce oxytocin-induced synthesis of IP3 and PGF2 alpha.(ABSTRACT TRUNCATED AT 250 WORDS) 相似文献
90.
Genetic risks are usually computed under the assumption that genetic parameters, such as the recombination fraction, are known without error. Uncertainty in the estimates of these parameters must translate into uncertainty regarding the risk. To allow for uncertainties in parameter values, one may employ Bayesian techniques or, in a maximum-likelihood framework, construct a support interval (SI) for the risk. Here we have implemented the latter approach. The SI for the risk is based on the SIs of parameters involved in the pedigree likelihood. As an empirical example, the SI for the risk was calculated for probands who are members of chronic spinal muscular atrophy kindreds. In order to evaluate the accuracy of a risk in genetic counseling situations, we advocate that, in addition to a point estimate, an SI for the risk should be calculated. 相似文献