首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   7992篇
  免费   838篇
  国内免费   3篇
  8833篇
  2024年   4篇
  2023年   56篇
  2022年   146篇
  2021年   271篇
  2020年   135篇
  2019年   179篇
  2018年   208篇
  2017年   194篇
  2016年   342篇
  2015年   527篇
  2014年   526篇
  2013年   543篇
  2012年   707篇
  2011年   731篇
  2010年   464篇
  2009年   359篇
  2008年   512篇
  2007年   509篇
  2006年   385篇
  2005年   382篇
  2004年   389篇
  2003年   337篇
  2002年   305篇
  2001年   58篇
  2000年   41篇
  1999年   53篇
  1998年   72篇
  1997年   34篇
  1996年   45篇
  1995年   27篇
  1994年   23篇
  1993年   17篇
  1992年   20篇
  1991年   18篇
  1990年   18篇
  1989年   12篇
  1988年   6篇
  1987年   6篇
  1986年   9篇
  1985年   13篇
  1984年   18篇
  1983年   9篇
  1982年   9篇
  1981年   29篇
  1980年   18篇
  1979年   15篇
  1978年   12篇
  1977年   7篇
  1976年   6篇
  1972年   4篇
排序方式: 共有8833条查询结果,搜索用时 15 毫秒
991.
Nitrobenzene 1,2-dioxygenase from Comamonas sp. strain JS765 catalyzes the initial reaction in nitrobenzene degradation, forming catechol and nitrite. The enzyme also oxidizes the aromatic rings of mono- and dinitrotoluenes at the nitro-substituted carbon, but the basis for this specificity is not understood. In this study, site-directed mutagenesis was used to modify the active site of nitrobenzene dioxygenase, and the contribution of specific residues in controlling substrate specificity and enzyme performance was evaluated. The activities of six mutant enzymes indicated that the residues at positions 258, 293, and 350 in the α subunit are important for determining regiospecificity with nitroarene substrates and enantiospecificity with naphthalene. The results provide an explanation for the characteristic specificity with nitroarene substrates. Based on the structure of nitrobenzene dioxygenase, substitution of valine for the asparagine at position 258 should eliminate a hydrogen bond between the substrate nitro group and the amino group of asparagine. Up to 99% of the mononitrotoluene oxidation products formed by the N258V mutant were nitrobenzyl alcohols rather than catechols, supporting the importance of this hydrogen bond in positioning substrates in the active site for ring oxidation. Similar results were obtained with an I350F mutant, where the formation of the hydrogen bond appeared to be prevented by steric interference. The specificity of enzymes with substitutions at position 293 varied depending on the residue present. Compared to the wild type, the F293Q mutant was 2.5 times faster at oxidizing 2,6-dinitrotoluene while retaining a similar Km for the substrate based on product formation rates and whole-cell kinetics.  相似文献   
992.
The Type III TGF-β receptor, betaglycan, is a widely expressed proteoglycan co-receptor for TGF-β superfamily ligands. The full-length protein undergoes ectodomain cleavage with release of a soluble ectodomain fragment. The fate of the resulting transmembrane-cytoplasmic fragment, however, has never been explored. We demonstrate here that the transmembrane-cytoplasmic fragment is stable in transfected cells and in cell lines expressing endogenous betaglycan. Production of this fragment is inhibited by the ectodomain shedding inhibitor TAPI-2. Treatment of cells with inhibitors of the intramembrane protease γ-secretase stabilizes this fragment, suggesting that it is a substrate of γ-secretase. Expression of the transmembrane-cytoplasmic fragment as well as γ-secretase inhibitor stabilization are independent of TGF-β1 or -β2 and are unaffected by mutation of the cytoplasmic domain serines that undergo phosphorylation. γ-Secretase inhibition or the expression of a transmembrane-cytoplasmic fragment in HepG2 cells blunted TGF-β2 signaling. Our findings thus suggest that the transmembrane-cytoplasmic fragment remaining after betaglycan ectodomain cleavage is stable and a substrate of γ-secretase, which may have significant implications for the TGF-β signaling response.  相似文献   
993.
Recent studies suggest that at low concentrations, ouabain increases Na–K ATPase and NHE1 activity and activates the Src signaling cascade in proximal tubule cells. Our laboratory demonstrated that low concentrations of ouabain increase blood pressure in rats. We hypothesize that ouabain-induced increase in blood pressure and Na–K ATPase activity requires NHE1 activity and association. To test this hypothesis we treated rats with ouabain (1 μg kg body wt− 1 day− 1) for 9 days in the presence or absence of the NHE1 inhibitor, zoniporide. Ouabain stimulated a significant increase in blood pressure which was prevented by zoniporide. Using NHE1-expressing Human Kidney cells 2 (HK2), 8 (HK8) and 11 (HK11) and Mouse Kidney cells from Wild type (WT) and NHE1 knock-out mice (SWE) cell lines, we show that ouabain stimulated Na–K ATPase activity and surface expression in a Src-dependent manner in NHE1-expressing cells but not in NHE1-deplete cells. Zoniporide prevented ouabain-induced stimulation of 86Rb uptake in the NHE1-expressing cells. FRET and TIRF microscopy showed that ouabain increased association between GFP-NHE1 and mCherry-Na–K ATPase transfected into NHE1-deficient SWE cells. Mutational analysis demonstrated that the caveolin binding motif (CBM) of Na–K ATPase α1 is required for translocation of both Na–K ATPase α1 and NHE1 to the basolateral membrane. Mutations in activity or scaffold domains of NHE1 resulted in loss of ouabain-mediated regulation of Na–K ATPase. These results support that NHE1 is required for the ouabain-induced increase in blood pressure, and that the caveolin binding motif of Na–K ATPase α1 as well as the activity and scaffolding domains of NHE1 are required for their functional association.  相似文献   
994.
Transgenerational effects are broader than only parental relationships. Despite mounting evidence that multigenerational effects alter phenotypic and life‐history traits, our understanding of how they combine to determine fitness is not well developed because of the added complexity necessary to study them. Here, we derive a quantitative genetic model of adaptation to an extraordinary new environment by an additive genetic component, phenotypic plasticity, maternal and grandmaternal effects. We show how, at equilibrium, negative maternal and negative grandmaternal effects maximize expected population mean fitness. We define negative transgenerational effects as those that have a negative effect on trait expression in the subsequent generation, that is, they slow, or potentially reverse, the expected evolutionary dynamic. When maternal effects are positive, negative grandmaternal effects are preferred. As expected under Mendelian inheritance, the grandmaternal effects have a lower impact on fitness than the maternal effects, but this dual inheritance model predicts a more complex relationship between maternal and grandmaternal effects to constrain phenotypic variance and so maximize expected population mean fitness in the offspring.  相似文献   
995.
The aerial parts of Lantana camara L. were collected from three different geographical locations: Artemisa (Cuba), Biratnagar (Nepal), and Sana'a (Yemen). The essential oils were obtained by hydrodistillation and analyzed by gas chromatography/mass spectrometry. A cluster analysis of 39 L. camara essential oil compositions revealed eight major chemotypes: β‐caryophyllene, germacrene D, ar‐curcumene/zingiberene, γ‐curcumen‐15‐al/epiβ‐bisabolol, (E)‐nerolidol, davanone, eugenol/alloaromadendrene, and carvone. The sample from Cuba falls into the group dominated by (E)‐nerolidol, the sample from Nepal is a davanone chemotype, and the sample from Yemen belongs to the β‐caryophyllene chemotype. The chemical composition of L. camara oil plays a role in the biological activity; the β‐caryophyllene and (E)‐nerolidol chemotypes showed antimicrobial and cytotoxic activities.  相似文献   
996.
997.
998.
Aldosterone stimulates Na+ transport in toad bladder and, simultaneously with a coincident dose-response relationship, inhibits the hexose monophosphate shunt pathway. Amiloride, an acylguanidine diuretic, inhibits sodium transport when applied to the apical surface of the bladder. In this study amiloride was found to partially reverse the inhibitory effect of aldosterone on the hexose monophosphate shunt pathway. The amiloride effect upon glucose metabolism was detected when it was applied to both surfaces of the bladder simultaneously, in flask experiments, and when it was applied to the apical surface. No effect of amiloride on the shunt pathway was detected when it was applied to the serosal surface only, even at very high concentrations. It may be, but has not been proven, that the effects of aldosterone and amiloride on the hexose monophosphate shunt pathway are mediated by a common site at the apical membrane.  相似文献   
999.
1000.
? Philodendron bipinnatifidum inflorescences heat up to 42 °C and thermoregulate. We investigated whether they generate heat via the cytochrome oxidase pathway uncoupled by uncoupling proteins (pUCPs), or the alternative oxidase (AOX). ? Contribution of AOX and pUCPs to heating in fertile (FM) and sterile (SM) male florets was determined using a combination of oxygen isotope discrimination, protein and substrate analyses. ? Both FM and SM florets thermoregulated independently for up to 30 h ex planta. In both floret types, AOX contributed > 90% of respiratory flux during peak heating. The AOX protein increased fivefold with the onset of thermogenesis in both floret types, whereas pUCP remained low throughout development. These data indicate that AOX is primarily responsible for heating, despite FM and SM florets potentially using different substrates, carbohydrates or lipids, respectively. Measurements of discrimination between O? isotopes in strongly respiring SM florets were affected by diffusion; however, this diffusional limitation was largely overcome using elevated O?. ? The first in vivo respiratory flux measurements in an arum show AOX contributes the bulk of heating in P. bipinnatifidum. Fine-scale regulation of AOX activity is post-translational. We also demonstrate that elevated O? can aid measurement of respiratory pathway fluxes in dense tissues.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号