首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   7817篇
  免费   824篇
  国内免费   3篇
  2023年   47篇
  2022年   142篇
  2021年   271篇
  2020年   134篇
  2019年   177篇
  2018年   205篇
  2017年   193篇
  2016年   338篇
  2015年   525篇
  2014年   522篇
  2013年   537篇
  2012年   694篇
  2011年   716篇
  2010年   459篇
  2009年   357篇
  2008年   502篇
  2007年   505篇
  2006年   381篇
  2005年   375篇
  2004年   385篇
  2003年   328篇
  2002年   299篇
  2001年   56篇
  2000年   39篇
  1999年   50篇
  1998年   72篇
  1997年   31篇
  1996年   44篇
  1995年   25篇
  1994年   23篇
  1993年   16篇
  1992年   16篇
  1991年   16篇
  1990年   13篇
  1989年   8篇
  1988年   3篇
  1987年   5篇
  1986年   8篇
  1985年   11篇
  1984年   17篇
  1983年   8篇
  1982年   9篇
  1981年   21篇
  1980年   13篇
  1979年   8篇
  1978年   10篇
  1977年   6篇
  1976年   5篇
  1975年   3篇
  1968年   3篇
排序方式: 共有8644条查询结果,搜索用时 15 毫秒
981.
982.
Students go to school to learn. How much, however, do students understand about the biological basis of this everyday process? Blackwell et al. (1) demonstrated a correlation between education about learning and academic achievement. Yet there are few studies investigating high school students' conceptions of learning. In this mixed-methods research study, written assessments were administered to 339 high school students in an urban school district after they completed their required biology education, and videotaped interviews were conducted with 15 students. The results indicated that the majority of students know little about the biological basis of learning, even with prompting, and they recall having learned little about it in school. Students appear to believe that people control their own ability to learn, and some have developed personal hypotheses to describe the learning process. On written assessments, 75% of participants demonstrated a nonbiological framework for learning, and, during interviews, 67% of participants revealed misconceptions about the biological basis of learning. Sample quotes of these interviews are included in this report, and the implications of these findings are discussed.  相似文献   
983.
Cellular volume changes play important roles in many processes associated with the normal cell activity, as well as various diseases. Consequently, there is a considerable need to accurately measure volumes of both individual cells and cell populations as a function of time. In this study, we have monitored cell volume changes in real time during apoptosis using digital holographic microscopy. Cell volume changes were deduced from the measured phase change of light transmitted through cells. Our digital holographic experiments showed that after exposure to 1 μM staurosporine for 4 h, the volumes of KB cells were reduced by ~50-60%, which is consistent with previous results obtained using electronic cell sizing and atomic force microscopy. In comparison with other techniques, digital holographic microscopy is advantageous because it employs noninvasive detection, has high time resolution, real time measurement capability, and the ability to simultaneously investigate time-dependent volume changes of both individual cells and cell populations.  相似文献   
984.
985.
Septins are conserved GTP-binding proteins that assemble into heteromeric complexes that form filaments and higher-order structures in cells. What directs filament assembly, determines the size of higher-order septin structures, and governs septin dynamics is still not well understood. We previously identified two kinases essential for septin ring assembly in the filamentous fungus Ashbya gossypii and demonstrate here that the septin Shs1p is multiphosphorylated at the C-terminus of the protein near the predicted coiled-coil domain. Expression of the nonphosphorylatable allele shs1-9A does not mimic the loss of the kinase nor does complete truncation of the Shs1p C-terminus. Surprisingly, however, loss of the C-terminus or the predicted coiled-coil domain of Shs1p generates expanded zones of septin assemblies and ectopic septin fibers, as well as aberrant cell morphology. The expanded structures form coincident with ring assembly and are heteromeric. Interestingly, while septin recruitment to convex membranes is increased, septin localization is diminished at concave membranes in these mutants. Additionally, the loss of the coiled-coil leads to increased mobility of Shs1p. These data indicate the coiled-coil of Shs1p is an important negative regulator of septin ring size and mobility, and its absence may make septin assembly sensitive to local membrane curvature.  相似文献   
986.
987.
Nurses on trial     
R Hersher 《Nature medicine》2012,18(8):1165-1167
  相似文献   
988.
989.
Clostridium difficile is a leading cause of hospital-acquired bacterial infections in the United States, and the increased incidence of recurrent C. difficile infections is particularly problematic. The molecular mechanisms of C. difficile colonization, including its ability to evade host innate immune responses, is poorly understood. We hypothesized that epidemic-associated C. difficile clinical isolates would exhibit increased resistance to mammalian, gut-associated, cationic antimicrobial peptides such as the cathelicidin LL-37. Standardized susceptibility tests as well as comparative proteomic analyses revealed that C. difficile strains varied in their responses to LL-37, with epidemic-associated 027 ribotype isolates displaying greater resistance. Further, exposure of C. difficile strains to sub-lethal concentrations of LL-37 resulted in increased resistance to subsequent peptide challenge, suggesting the presence of inducible resistance mechanisms. Correspondingly, LL-37 exposure altered the C. difficile proteome, with marked changes in abundance of cell wall biosynthesis proteins, surface layer proteins, ABC transporters and lysine metabolism pathway components. Taken together, these results suggest that innate immune avoidance mechanisms could facilitate robust colonization by C. difficile.  相似文献   
990.
The biological complexity associated with the regulation of histone demethylases makes it desirable to configure a cellular mechanistic assay format that simultaneously encompasses as many of the relevant cellular processes as possible. In this report, the authors describe the configuration of a JMJD3 high-content cellular mechanistic imaging assay that uses single-cell multiparameter measurements to accurately assess cellular viability and the enzyme-dependent demethylation of the H3K27(Me)3 mark by exogenously expressed JMJD3. This approach couples robust statistical analyses with the spatial resolving power of cellular imaging. This enables segregation of expressing and nonexpressing cells into discrete subpopulations and consequently pharmacological quantification of compounds of interest in the expressing population at varying JMJD3 expression levels. Moreover, the authors demonstrate the utility of this hit identification strategy through the successful prosecution of a medium-throughput focused campaign of an 87 500-compound file, which has enabled the identification of JMJD3 cellular-active chemotypes. This study represents the first report of a demethylase high-content imaging assay with the ability to capture a repertoire of pharmacological tools, which are likely both to inform our mechanistic understanding of how JMJD3 is modulated and, more important, to contribute to the identification of novel therapeutic modalities for this demethylase enzyme.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号