首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1191篇
  免费   113篇
  国内免费   1篇
  2023年   7篇
  2022年   16篇
  2021年   28篇
  2020年   15篇
  2019年   23篇
  2018年   31篇
  2017年   25篇
  2016年   50篇
  2015年   72篇
  2014年   65篇
  2013年   78篇
  2012年   104篇
  2011年   96篇
  2010年   57篇
  2009年   67篇
  2008年   58篇
  2007年   66篇
  2006年   51篇
  2005年   49篇
  2004年   44篇
  2003年   42篇
  2002年   34篇
  2001年   21篇
  2000年   19篇
  1999年   13篇
  1998年   17篇
  1997年   7篇
  1996年   7篇
  1995年   9篇
  1994年   6篇
  1993年   5篇
  1992年   13篇
  1991年   11篇
  1990年   11篇
  1989年   10篇
  1988年   6篇
  1987年   7篇
  1986年   5篇
  1985年   7篇
  1984年   5篇
  1983年   3篇
  1982年   3篇
  1981年   5篇
  1977年   9篇
  1976年   3篇
  1975年   3篇
  1973年   4篇
  1972年   5篇
  1971年   3篇
  1967年   2篇
排序方式: 共有1305条查询结果,搜索用时 15 毫秒
981.
982.
A bacterial strain, designated BAPVE7BT, was isolated from root nodules of Phaseolus vulgaris in Spain. Phylogenetic analysis based on its 16S rRNA gene sequence placed the isolate into the genus Fontibacillus with Fontibacillus panacisegetis KCTC 13564T its closest relative with 97.1 % identity. The isolate was observed to be a Gram-positive, motile and sporulating rod. The catalase test was negative and oxidase was weak. The strain was found to reduce nitrate to nitrite and to produce β-galactosidase but the production of gelatinase, caseinase, urease, arginine dehydrolase, ornithine or lysine decarboxylase was negative. Acetoin production and aesculin hydrolysis were found to be positive. Growth was observed to be supported by many carbohydrates and organic acids as carbon source. MK-7 was identified as the predominant menaquinone and the major fatty acid (43.7 %) as anteiso-C15:0, as occurs in the other species of the genus Fontibacillus. Strain BAPVE7BT displayed a complex lipid profile consisting of diphosphatidylglycerol, phosphatidylglycerol, four glycolipids, four phospholipids, two lipids, two aminolipids and an aminophospholipid. Mesodiaminopimelic acid was detected in the peptidoglycan. The G+C content was determined to be 45.6 mol% (Tm). Phylogenetic, chemotaxonomic and phenotypic analyses showed that strain BAPVE7BT should be considered a new species of genus Fontibacillus, for which the name Fontibacillus phaseoli sp. nov. is proposed (type strain, LMG 27589T, CECT 8333T).  相似文献   
983.
984.
985.
Several evidences have shown that salt excess is an important determinant of cardiovascular and renal derangement in hypertension. The present study aimed to investigate the renal effects of chronic high or low salt intake in the context of hypertension and to elucidate the molecular mechanisms underlying such effects. To this end, newly weaned male SHR were fed with diets only differing in NaCl content: normal salt (NS: 0.3%), low salt (LS: 0.03%), and high salt diet (HS: 3%) until 7 months of age. Analysis of renal function, morphology, and evaluation of the expression of the main molecular components involved in the renal handling of albumin, including podocyte slit-diaphragm proteins and proximal tubule endocytic receptors were performed. The relationship between diets and the balance of the renal angiotensin-converting enzyme (ACE) and ACE2 enzymes was also examined. HS produced glomerular hypertrophy and decreased ACE2 and nephrin expressions, loss of morphological integrity of the podocyte processes, and increased proteinuria, characterized by loss of albumin and high molecular weight proteins. Conversely, severe hypertension was attenuated and renal dysfunction was prevented by LS since proteinuria was much lower than in the NS SHRs. This was associated with a decrease in kidney ACE/ACE2 protein and activity ratio and increased cubilin renal expression. Taken together, these results suggest that LS attenuates hypertension progression in SHRs and preserves renal function. The mechanisms partially explaining these findings include modulation of the intrarenal ACE/ACE2 balance and the increased cubilin expression. Importantly, HS worsens hypertensive kidney injury and decreases the expression nephrin, a key component of the slit diaphragm.  相似文献   
986.
Some land and ocean processes are related through connections (and synoptic-scale teleconnections) to the atmosphere. Synoptic-scale atmospheric (El Niño/Southern Oscillation [ENSO], Pacific Decadal Oscillation [PDO], and North Atlantic Oscillation [NAO]) decadal cycles are known to influence the global terrestrial carbon cycle. Potentially, smaller scale land-ocean connections influenced by coastal upwelling (changes in sea surface temperature) may be important for local-to-regional water-limited ecosystems where plants may benefit from air moisture transported from the ocean to terrestrial ecosystems. Here we use satellite-derived observations to test potential connections between changes in sea surface temperature (SST) in regions with strong coastal upwelling and terrestrial gross primary production (GPP) across the Baja California Peninsula. This region is characterized by an arid/semiarid climate along the southern California Current. We found that SST was correlated with the fraction of photosynthetic active radiation (fPAR; as a proxy for GPP) with lags ranging from 0 to 5 months. In contrast ENSO was not as strongly related with fPAR as SST in these coastal ecosystems. Our results show the importance of local-scale changes in SST during upwelling events, to explain the variability in GPP in coastal, water-limited ecosystems. The response of GPP to SST was spatially-dependent: colder SST in the northern areas increased GPP (likely by influencing fog formation), while warmer SST at the southern areas was associated to higher GPP (as SST is in phase with precipitation patterns). Interannual trends in fPAR are also spatially variable along the Baja California Peninsula with increasing secular trends in subtropical regions, decreasing trends in the most arid region, and no trend in the semi-arid regions. These findings suggest that studies and ecosystem process based models should consider the lateral influence of local-scale ocean processes that could influence coastal ecosystem productivity.  相似文献   
987.
988.
Since its discovery at the end of the XIX century, Candida albicans has emerged as one of the most important human pathogenic fungi. This yeast efficiently colonizes the gastrointestinal cavity of humans, which is an important source for gastrointestinal-mediated dissemination of the fungus to internal organs under immune suppression. Controlling colonization may therefore lead to the eradication of C. albicans which may, in turn, be a useful strategy in the prevention of candidiasis. Recent studies indicate that colonization is influenced by -and related to-the white opaque (wo) transition, an epigenetic transition that has been shown to mediate several aspects of the biology of this fungus. Efficient mating in C. albicans occurs by a two-step process which involves the conversion to a homozygous mating type cell followed by a transition to the opaque state. The discovery of the opaque cell as the mating competent phase of this fungus provided an interesting evolutionary example of the role of mating in the adaptation to a mammalian host in a pathogenic fungus. A full sexual cycle has not been observed; rather, after mating, return to a diploid state is achieved by concerted chromosome loss, being this an important source of genetic variability for this opportunistic pathogen.  相似文献   
989.
The Arabidopsis rugosa1 (rug1) mutant has irregularly shaped leaves and reduced growth. In the absence of pathogens, leaves of rug1 plants have spontaneous lesions reminiscent of those seen in lesion-mimic mutants; rug1 plants also express cytological and molecular markers associated with defence against pathogens. These rug1 phenotypes are made stronger by dark/light transitions. The rug1 mutant also has delayed flowering time, upregulation of the floral repressor FLOWERING LOCUS C (FLC) and downregulation of the flowering promoters FT and SOC1/AGL20. Vernalization suppresses the late flowering phenotype of rug1 by repressing FLC. Microarray analysis revealed that 280 nuclear genes are differentially expressed between rug1 and wild type; almost a quarter of these genes are involved in plant defence. In rug1, the auxin response is also affected and several auxin-responsive genes are downregulated. We identified the RUG1 gene by map-based cloning and found that it encodes porphobilinogen deaminase (PBGD), also known as hydroxymethylbilane synthase, an enzyme of the tetrapyrrole biosynthesis pathway, which produces chlorophyll, heme, siroheme and phytochromobilin in plants. PBGD activity is reduced in rug1 plants, which accumulate porphobilinogen. Our results indicate that Arabidopsis PBGD deficiency impairs the porphyrin pathway and triggers constitutive activation of plant defence mechanisms leading to leaf lesions and affecting vegetative and reproductive development.  相似文献   
990.
Type III effector proteins from bacterial pathogens manipulate components of host immunity to suppress defence responses and promote pathogen development. In plants, host proteins targeted by some effectors called avirulence proteins are surveyed by plant disease resistance proteins referred to as "guards". The Ralstonia solanacearum effector protein PopP2 triggers immunity in Arabidopsis following its perception by the RRS1-R resistance protein. Here, we show that PopP2 interacts with RRS1-R in the nucleus of living plant cells. PopP2 belongs to the YopJ-like family of cysteine proteases, which share a conserved catalytic triad that includes a highly conserved cysteine residue. The catalytic cysteine mutant PopP2-C321A is impaired in its avirulence activity although it is still able to interact with RRS1-R. In addition, PopP2 prevents proteasomal degradation of RRS1-R, independent of the presence of an integral PopP2 catalytic core. A liquid chromatography/tandem mass spectrometry analysis showed that PopP2 displays acetyl-transferase activity leading to its autoacetylation on a particular lysine residue, which is well conserved among all members of the YopJ family. These data suggest that this lysine residue may correspond to a key binding site for acetyl-coenzyme A required for protein activity. Indeed, mutation of this lysine in PopP2 abolishes RRS1-R-mediated immunity. In agreement with the guard hypothesis, our results favour the idea that activation of the plant immune response by RRS1-R depends not only on the physical interaction between the two proteins but also on its perception of PopP2 enzymatic activity.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号