首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4351篇
  免费   304篇
  国内免费   2篇
  4657篇
  2023年   21篇
  2022年   55篇
  2021年   113篇
  2020年   84篇
  2019年   94篇
  2018年   123篇
  2017年   127篇
  2016年   177篇
  2015年   236篇
  2014年   247篇
  2013年   310篇
  2012年   395篇
  2011年   339篇
  2010年   223篇
  2009年   185篇
  2008年   256篇
  2007年   263篇
  2006年   213篇
  2005年   198篇
  2004年   174篇
  2003年   185篇
  2002年   156篇
  2001年   49篇
  2000年   38篇
  1999年   36篇
  1998年   42篇
  1997年   28篇
  1996年   27篇
  1995年   22篇
  1994年   23篇
  1993年   28篇
  1992年   18篇
  1991年   22篇
  1990年   19篇
  1989年   9篇
  1988年   10篇
  1987年   9篇
  1986年   10篇
  1985年   17篇
  1984年   10篇
  1983年   13篇
  1982年   6篇
  1981年   6篇
  1980年   9篇
  1977年   5篇
  1975年   5篇
  1972年   2篇
  1965年   2篇
  1963年   2篇
  1961年   2篇
排序方式: 共有4657条查询结果,搜索用时 0 毫秒
101.
The soluble Tim9p-Tim10p (Tim, translocase of inner membrane) complex of the mitochondrial intermembrane space mediates the import of the carrier proteins and is a component of the TIM22 import system. The mechanism by which the Tim9p-Tim10p complex assembles and binds the carriers is not well understood, but previous studies have proposed that the conserved cysteine residues in the 'twin CX3C' motif coordinate zinc and potentially generate a zinc-finger-like structure that binds to the matrix loops of the carrier proteins. Here we have purified the native and recombinant Tim9p-Tim10p complex, and show that both complexes resemble each other and consist of three Tim9p and three Tim10p. Results from inductively coupled plasma--mass spectrometry studies failed to detect zinc in the Tim9p-Tim10p complex. Instead, the cysteine residues seemingly formed disulfide linkages. The Tim9p-Tim10p complex bound specifically to the transmembrane domains of the ADP/ATP carrier, but had no affinity for Tim23p, an inner membrane protein that is inserted via the TIM22 complex. The chaperone-like Tim9p-Tim10p complex thus may prevent aggregation of the unfolded carrier proteins in the aqueous intermembrane space.  相似文献   
102.
In this study, we have analyzed the specific contribution of the cortical radial glia (RG) for gap junctional communication (GJC) within the postnatal subventricular zone (SVZ). To specifically target RG as source of dye‐coupling in situ, we have developed a new technique that involves direct cell loading through the processes that reach the pial surface, with a mix of gap junction permeant (Lucifer yellow, LY) and nonpermeant (rhodamine‐conjugated dextran 3 KDa, RD) fluorochromes, the latter used as a marker for direct loaded cells. Tissue sections were analyzed for identification of directly loaded (LY+RD+) and coupled cells (LY+RD–) in the SVZ. Directly loaded cells were restricted to the region underlying the pial loading surface area. Coupled cells were distributed in a bistratified manner, along the outer dorsal surface of the SVZ and aligning the ventricle, leaving the SVZ core relatively free. Blocking GJC prior to pial loading greatly reduced dye coupling. Phenotypic analysis indicated that coupling by RG excludes neuroblasts and is mostly restricted to cells of glial lineage. Notwithstanding, no corresponding restriction to specific cell phenotype was found for two connexin isotypes, Cx43 and Cx45, in the postnatal SVZ. The extensive homocellular cell coupling by RG suggests an important role in the regulation of neurogenesis and functional compartmentalization of the postnatal SVZ. © 2012 Wiley Periodicals, Inc. Develop Neurobiol 2012  相似文献   
103.
The elimination of transformed and viral infected cells by natural killer (NK) cells requires a specialized junction between NK and target cells, denominated immunological synapse (IS). After initial recognition, the IS enables the directed secretion of lytic granules content into the susceptible target cell. The lymphocyte function-associated antigen (LFA)-1 regulates NK effector function by enabling NK-IS assembly and maturation. The pathways underlying LFA-1 accumulation at the IS in NK cells remained uncharacterized. A kinase anchoring protein 350 (AKAP350) is a centrosome/Golgi-associated protein, which, in T cells, participates in LFA-1 activation by mechanisms that have not been elucidated. We first evaluated AKAP350 participation in NK cytolytic activity. Our results showed that the decrease in AKAP350 levels by RNA interference (AKAP350KD) inhibited NK-YTS cytolytic activity, without affecting conjugate formation. The impairment of NK effector function in AKAP350KD cells correlated with decreased LFA-1 clustering and defective IS maturation. AKAP350KD cells that were exclusively activated via LFA-1 showed impaired LFA-1 organization and deficient lytic granule translocation as well. In NK AKAP350KD cells, activation signaling through Vav1 was preserved up to 10 min of interaction with target cells, but significantly decreased afterwards. Experiments in YTS and in ex vivo NK cells identified an intracellular pool of LFA-1, which partially associated with the Golgi apparatus and, upon NK activation, redistributed to the IS in an AKAP350-dependent manner. The analysis of Golgi organization indicated that the decrease in AKAP350 expression led to the disruption of the Golgi integrity in NK cells. Alteration of Golgi function by BFA treatment or AKAP350 delocalization from this organelle also led to impaired LFA-1 localization at the IS. Therefore, this study characterizes AKAP350 participation in the modulation of NK effector function, revealing the existence of a Golgi-dependent trafficking pathway for LFA-1, which is relevant for LFA-1 organization at NK-lytic IS.  相似文献   
104.
Human hair follicle dermal papilla cells (HFDPCs) located in hair follicles (HFs) play a pivotal role in hair follicle morphogenesis, hair cycling, and hair growth. Over the past few decades, probiotic bacteria (PB) have been reported to have beneficial effects such as improved skin health, anti-obesity, and immuno-modulation for conditions including atopic dermatitis and inflammatory bowel disease (IBD). PB can secrete 50~150 nm sized extracellular vesicles (EVs) containing microbial DNA, miRNA, proteins, lipids, and cell wall components. These EVs can regulate communication between bacteria or between bacteria and their host. Although numerous biological effects of PB-EVs have been reported, the physiological roles of Leuconostoc holzapfelii (hs-Lh), which is isolated from human scalp tissue, and the extracellular vesicles derived from them (hs-LhEVs) are largely unknown. Herein, we investigated the effects of hs-LhEVs on hair growth in HFDPCs. We show that hs-LhEVs increase cell proliferation, migration, and regulate the cell cycle. Furthermore, hs-LhEVs were found to modulate the mRNA expression of hair-growth-related genes in vitro. These data demonstrate that hs-LhEVs can reduce apoptosis by modulating the cell cycle and promote hair growth by regulation via the Wnt/β-catenin signal transduction pathway.  相似文献   
105.
Changes in land use strongly influence habitat attributes (e.g., herbaceous ground cover and tree richness) and can consequently affect ecological functions. Most studies have focused on the response of these ecological functions to land‐use changes within only a single vegetation type. These studies have often focused solely on agricultural conversion of forests, making it nearly impossible to draw general conclusions across other vegetation types or with other land‐use changes (e.g., afforestation). We examined the consequences of agricultural conversion for seed removal by ants in native grassland, savanna, and savanna‐forest habitats that had been transformed to planted pastures (Brachiaria decumbens) and tree plantations (Eucalyptus spp.) and explored if changes in seed removal were correlated with differences in habitat attributes between habitat types. We found that land‐use changes affected seed removal across the tree cover gradient and that the magnitude of impact was influenced by similarity in habitat attributes between native and converted habitats, being greater where there was afforestation (Eucalyptus spp in grassland and savanna). Herbaceous ground cover, soil hardness, and tree richness were the most important habitat attributes that correlated with differences in seed removal. Our results reveal that the magnitude of impact of land‐use changes on seed removal varies depending on native vegetation type and is associated with the type of habitat attribute change. Our findings have implications for biodiversity in tropical grassy systems: afforestation can have a greater detrimental impact on ecological function than tree loss.  相似文献   
106.
The lower Mokelumne River (LMR), located in the California Central Valley, supports a population of natural-origin Oncorhynchus mykiss. In addition, the Mokelumne River Fish Hatchery (Hatchery) contributes hatchery produced O. mykiss to the system annually. We conducted a 3 year acoustic tagging study to evaluate the migratory characteristics of LMR hatchery and natural-origin O. mykiss to the Pacific Ocean. Specifically, we analyzed downstream movement and migration rates, routes, and success of acoustically tagged O. mykiss of hatchery and natural origin under variable release locations in non-tidal and tidal habitats. Results from our study suggest there are significant differences in the proportion of hatchery and natural O. mykiss that demonstrate downstream movement. Fish origin, size, and release location all had a significant effect on whether an individual demonstrated downstream movement. Mokelumne origin O. mykiss that initiated downstream movement utilized numerous migration routes throughout the Delta during their migration towards the Pacific Ocean. We identified four primary migration pathways from the lower Mokelumne River through the Sacramento-San Joaquin Delta while the Delta Cross Channel was closed. However, several other pathways were utilized. Origin had a significant effect on O. mykiss success in reaching key points in the Delta and through the Estuary. Fish size had a significant effect on whether an individual reached the marine environment. Of the 467 O. mykiss tagged, 34 successfully reached the Pacific Ocean (Golden Gate Bridge), and of these, 33 were hatchery-origin and 1 was natural-origin. A higher proportion of hatchery-origin fish (10% of tagged) migrated to the ocean compared to natural-origin fish (<1%). Our study provides valuable information on the differences between hatchery and natural-origin O. mykiss migration characteristics as well as unique insight into the migratory behavior of little studied non-Sacramento River origin salmonids.  相似文献   
107.
108.
109.

Background

Antiretroviral Treatment (ART) significantly reduces HIV transmission. We conducted a cost-effectiveness analysis of the impact of expanded ART in South Africa.

Methods

We model a best case scenario of 90% annual HIV testing coverage in adults 15–49 years old and four ART eligibility scenarios: CD4 count <200 cells/mm3 (current practice), CD4 count <350, CD4 count <500, all CD4 levels. 2011–2050 outcomes include deaths, disability adjusted life years (DALYs), HIV infections, cost, and cost per DALY averted. Service and ART costs reflect South African data and international generic prices. ART reduces transmission by 92%. We conducted sensitivity analyses.

Results

Expanding ART to CD4 count <350 cells/mm3 prevents an estimated 265,000 (17%) and 1.3 million (15%) new HIV infections over 5 and 40 years, respectively. Cumulative deaths decline 15%, from 12.5 to 10.6 million; DALYs by 14% from 109 to 93 million over 40 years. Costs drop $504 million over 5 years and $3.9 billion over 40 years with breakeven by 2013. Compared with the current scenario, expanding to <500 prevents an additional 585,000 and 3 million new HIV infections over 5 and 40 years, respectively. Expanding to all CD4 levels decreases HIV infections by 3.3 million (45%) and costs by $10 billion over 40 years, with breakeven by 2023. By 2050, using higher ART and monitoring costs, all CD4 levels saves $0.6 billion versus current; other ART scenarios cost $9–194 per DALY averted. If ART reduces transmission by 99%, savings from all CD4 levels reach $17.5 billion. Sensitivity analyses suggest that poor retention and predominant acute phase transmission reduce DALYs averted by 26% and savings by 7%.

Conclusion

Increasing the provision of ART to <350 cells/mm3 may significantly reduce costs while reducing the HIV burden. Feasibility including HIV testing and ART uptake, retention, and adherence should be evaluated.  相似文献   
110.
Modulation of cerebral Rho GTPases activity in mice brain by intracerebral administration of Cytotoxic Necrotizing Factor 1 (CNF1) leads to enhanced neurotransmission and synaptic plasticity and improves learning and memory. To gain more insight into the interactions between CNF1 and neuronal cells, we used primary neuronal and astrocytic cultures from rat embryonic brain to study CNF1 effects on neuronal differentiation, focusing on dendritic tree growth and synapse formation, which are strictly modulated by Rho GTPases. CNF1 profoundly remodeled the cytoskeleton of hippocampal and cortical neurons, which showed philopodia-like, actin-positive projections, thickened and poorly branched dendrites, and a decrease in synapse number. CNF1 removal, however, restored dendritic tree development and synapse formation, suggesting that the toxin can reversibly block neuronal differentiation. On differentiated neurons, CNF1 had a similar effacing effect on synapses. Therefore, a direct interaction with CNF1 is apparently deleterious for neurons. Since astrocytes play a pivotal role in neuronal differentiation and synaptic regulation, we wondered if the beneficial in vivo effect could be mediated by astrocytes. Primary astrocytes from embryonic cortex were treated with CNF1 for 48 hours and used as a substrate for growing hippocampal neurons. Such neurons showed an increased development of neurites, in respect to age-matched controls, with a wider dendritic tree and a richer content in synapses. In CNF1-exposed astrocytes, the production of interleukin 1β, known to reduce dendrite development and complexity in neuronal cultures, was decreased. These results demonstrate that astrocytes, under the influence of CNF1, increase their supporting activity on neuronal growth and differentiation, possibly related to the diminished levels of interleukin 1β. These observations suggest that the enhanced synaptic plasticity and improved learning and memory described in CNF1-injected mice are probably mediated by astrocytes.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号