首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   603篇
  免费   40篇
  2023年   4篇
  2022年   11篇
  2021年   13篇
  2020年   10篇
  2019年   13篇
  2018年   10篇
  2016年   10篇
  2015年   22篇
  2014年   25篇
  2013年   18篇
  2012年   45篇
  2011年   36篇
  2010年   18篇
  2009年   18篇
  2008年   32篇
  2007年   25篇
  2006年   29篇
  2005年   26篇
  2004年   29篇
  2003年   32篇
  2002年   27篇
  2001年   16篇
  2000年   17篇
  1999年   9篇
  1998年   4篇
  1997年   4篇
  1996年   4篇
  1991年   9篇
  1990年   6篇
  1989年   8篇
  1988年   7篇
  1987年   7篇
  1986年   2篇
  1985年   5篇
  1984年   4篇
  1983年   3篇
  1982年   4篇
  1981年   4篇
  1980年   8篇
  1979年   8篇
  1978年   4篇
  1977年   10篇
  1976年   5篇
  1975年   2篇
  1974年   4篇
  1973年   4篇
  1972年   10篇
  1971年   2篇
  1969年   3篇
  1959年   2篇
排序方式: 共有643条查询结果,搜索用时 46 毫秒
71.
We investigated the mode of inheritance of nutritionally induced diabetes in the desert gerbil Psammomys obesus (sand rat), following transfer from low-energy (LE) to high-energy (HE) diet which induces hyperglycaemia. Psammomys selected for high or low blood glucose level were used as two parental lines. A first backcross generation (BC(1)) was formed by crossing F(1) males with females of the diabetes-prone line. The resulting 232 BC(1) progeny were assessed for blood glucose. All progeny were weaned at 3 weeks of age (week 0), and their weekly assessment of blood glucose levels proceeded until week 9 after weaning, with all progeny maintained on HE diet. At weeks 1 to 9 post weaning, a clear bimodal distribution statistically different from unimodal distribution of blood glucose was observed, normoglycaemic and hyperglycaemic at a 1:1 ratio. This ratio is expected at the first backcross generation for traits controlled by a single dominant gene. From week 0 (prior to the transfer to HE diet) till week 8, the hyperglycaemic individuals were significantly heavier (4--17%) than the normoglycaemic ones. The bimodal blood glucose distribution in BC(1) generation, with about equal frequencies in each mode, strongly suggests that a single major gene affects the transition from normo- to hyperglycaemia. The wide range of blood glucose values among the hyperglycaemic individuals (180 to 500 mg/dl) indicates that several genes and environmental factors influence the extent of hyperglycaemia. The diabetes-resistant allele appears to be dominant; the estimate for dominance ratio is 0.97.  相似文献   
72.
Although adequate nutrition is essential for optimal neural activity and survival, mild energy restriction may improve cognition and prolong longevity. Energy status is monitored by the cellular AMP-activated protein kinase (AMPK) system, whereas leptin regulates total energy balance. We investigated the roles of AMPK and leptin in cognition and survival under diet restriction (DR). Hippocampal AMPK activity increases with energy restriction. Modest activation (DR to 60%) induces neurogenesis and improves cognition. However, DR to 40% augmented AMPK activity, reduced cognition and catecholamines, and increased neural apoptosis and mortality. Leptin signaling is preserved only in DR to 60%, countering the effects of AMPK "overactivation" by preventing neuroapoptosis, restoring noradrenergic activity and behavioral performance, and increasing longevity. The balance between leptin and AMPK is crucial in determining neuronal fate, cognitive ability, and survival. Should these findings extend to Man, then controlled activation of AMPK may improve neurodegenerative diseases, and leptin may have a new role in treating stress-associated malnutrition.  相似文献   
73.
Zinc influx, driven by a steep inward electrochemical gradient, plays a fundamental role in zinc signaling and in pathophysiologies linked to intracellular accumulation of toxic zinc. Yet, the cellular transport mechanisms that actively generate or maintain the transmembrane gradients are not well understood. We monitored Na+-dependent Zn2+ transport in HEK293 cells and cortical neurons, using fluorescent imaging. Treatment of the HEK293 cells with CaPO4 precipitates induced Na+-dependent Zn2+ extrusion, against a 500-fold transmembrane zinc gradient, or zinc influx upon reversal of Na+ gradient, thus indicating that Na+/Zn2+ exchange is catalyzing active Zn2+ transport. Depletion of intracellular ATP did not inhibit the Na+-dependent Zn2+ extrusion, consistent with a mechanism involving a secondary active transporter. Inhibitors of the Na+/Ca2+ exchanger failed to inhibit Na+-dependent Zn2+ efflux. In addition, zinc transport was unchanged in HEK293 cells heterologously expressing functional cardiac or neuronal Na+/Ca2+ exchangers, thus indicating that the Na+/Zn2+ exchange activity is not mediated by the Na+/Ca2+ exchanger. Sodium-dependent zinc exchange, facilitating the removal of intracellular zinc, was also monitored in neurons. To our knowledge, the Na+/Zn2+ exchanger described here is the first example of a mammalian transport mechanism capable of Na+-dependent active extrusion of zinc. Such mechanism is likely to play an important role, not only in generating the transmembrane zinc gradients, but also in protecting cells from the potentially toxic effects of permeation of this ion.  相似文献   
74.
Vanilloid receptor 1 (TRPV1), a membrane-associated cation channel, is activated by the pungent vanilloid from chili peppers, capsaicin, and the ultra potent vanilloid from Euphorbia resinifera, resiniferatoxin (RTX), as well as by physical stimuli (heat and protons) and proposed endogenous ligands (anandamide, N-arachidonyldopamine, N-oleoyldopamine, and products of lipoxygenase). Only limited information is available in TRPV1 on the residues that contribute to vanilloid activation. Interestingly, rabbits have been suggested to be insensitive to capsaicin and have been shown to lack detectable [(3)H]RTX binding in membranes prepared from their dorsal root ganglia. We have cloned rabbit TRPV1 (oTRPV1) and report that it exhibits high homology to rat and human TRPV1. Like its mammalian orthologs, oTRPV1 is selectively expressed in sensory neurons and is sensitive to protons and heat activation but is 100-fold less sensitive to vanilloid activation than either rat or human. Here we identify key residues (Met(547) and Thr(550)) in transmembrane regions 3 and 4 (TM3/4) of rat and human TRPV1 that confer vanilloid sensitivity, [(3)H]RTX binding and competitive antagonist binding to rabbit TRPV1. We also show that these residues differentially affect ligand recognition as well as the assays of functional response versus ligand binding. Furthermore, these residues account for the reported pharmacological differences of RTX, PPAHV (phorbol 12-phenyl-acetate 13-acetate 20-homovanillate) and capsazepine between human and rat TRPV1. Based on our data we propose a model of the TM3/4 region of TRPV1 bound to capsaicin or RTX that may aid in the development of potent TRPV1 antagonists with utility in the treatment of sensory disorders.  相似文献   
75.
RNA interference (RNAi) is a powerful reverse genetic tool to study gene function. The data presented here show that Agrobacterium rhizogenes-mediated RNAi is a fast and effective tool to study genes involved in root biology. The Arabidopsis gene KOJAK, involved in root hair development, was efficiently knocked down. A. rhizogenes-mediated root transformation is a fast method to generate adventitious, genetically transformed roots. In order to select for co-transformed roots a binary vector was developed that enables selection based on DsRED1 expression, with the additional benefit that chimaeric roots can be discriminated. The identification of chimaeric roots provided the opportunity to examine the extent of systemic spread of the silencing signal in the composite plants of both Arabidopsis and Medicago truncatula. It is shown that RNA silencing does not spread systemically to non-co-transformed (lateral) roots and only inefficiently to the non-transgenic shoot. Furthermore, evidence is presented which shows that RNAi is cell autonomous in the root epidermis.  相似文献   
76.
The Ran-binding protein 2 (RanBP2) is a large multimodular and pleiotropic protein. Several molecular partners with distinct functions interacting specifically with selective modules of RanBP2 have been identified. Yet, the significance of these interactions with RanBP2 and the genetic and physiological role(s) of RanBP2 in a whole-animal model remain elusive. Here, we report the identification of two novel partners of RanBP2 and a novel physiological role of RanBP2 in a mouse model. RanBP2 associates in vitro and in vivo and colocalizes with the mitochondrial metallochaperone, Cox11, and the pacemaker of glycolysis, hexokinase type I (HKI) via its leucine-rich domain. The leucine-rich domain of RanBP2 also exhibits strong chaperone activity toward intermediate and mature folding species of Cox11 supporting a chaperone role of RanBP2 in the cytosol during Cox11 biogenesis. Cox11 partially colocalizes with HKI, thus supporting additional and distinct roles in cell function. Cox11 is a strong inhibitor of HKI, and RanBP2 suppresses the inhibitory activity of Cox11 over HKI. To probe the physiological role of RanBP2 and its role in HKI function, a mouse model harboring a genetically disrupted RanBP2 locus was generated. RanBP2−/− are embryonically lethal, and haploinsufficiency of RanBP2 in an inbred strain causes a pronounced decrease of HKI and ATP levels selectively in the central nervous system. Inbred RanBP2+/− mice also exhibit deficits in growth rates and glucose catabolism without impairment of glucose uptake and gluconeogenesis. These phenotypes are accompanied by a decrease in the electrophysiological responses of photosensory and postreceptoral neurons. Hence, RanBP2 and its partners emerge as critical modulators of neuronal HKI, glucose catabolism, energy homeostasis, and targets for metabolic, aging disorders and allied neuropathies.  相似文献   
77.
The coupling of kinetochores to dynamic spindle microtubules is crucial for chromosome positioning and segregation, error correction, and cell cycle progression. How these fundamental attachments are made and persist under tensile forces from the spindle remain important questions. As microtubule-binding elements, the budding yeast Ndc80 and Dam1 kinetochore complexes are essential and not redundant, but their distinct contributions are unknown. In this study, we show that the Dam1 complex is a processivity factor for the Ndc80 complex, enhancing the ability of the Ndc80 complex to form load-bearing attachments to and track with dynamic microtubule tips in vitro. Moreover, the interaction between the Ndc80 and Dam1 complexes is abolished when the Dam1 complex is phosphorylated by the yeast aurora B kinase Ipl1. This provides evidence for a mechanism by which aurora B resets aberrant kinetochore–microtubule attachments. We propose that the action of the Dam1 complex as a processivity factor in kinetochore–microtubule attachment is regulated by conserved signals for error correction.  相似文献   
78.
Centrosome amplification has been proposed to contribute to the development of aneuploidy and genome instability. Here, we show that Ataxia-Telangiectasia Mutated (ATM) is localized to the centrosome and co-purified with gamma-tubulin. The importance of ATM in centrosome duplication is demonstrated in Atm-deficient primary mouse embryonic fibroblasts that display centrosome amplification. Interestingly, centrosome amplification was not observed in tumor cell lines derived from Atm and p21 double deficient mouse. Our results also indicate that both p53 and p21 operate in the same pathway as ATM in regulating centrosome biogenesis. Finally, a potential role of ATM in spindle checkpoint regulation is demonstrated by which ATM protein is activated by mitotic stress. These results suggest a role of ATM in spindle checkpoint regulation and indicate that ATM suppresses genome instability and cellular transformation by regulating centrosome biogenesis.  相似文献   
79.
Goshen T  Shpigel NY 《Theriogenology》2006,66(9):2210-2218
Retained fetal membranes (RFM) and clinical metritis (CM) are frequently diagnosed disease conditions in dairy cows and considered of major economic impact due to negative effect on reproduction and milk production. The objective of this study was to evaluate the efficacy of i.u. tetracycline for the treatment of RFM and CM in dairy cows. Affected cows were randomly assigned to two groups; treatment group animals received i.u. 5g chlortetracycline twice weekly for 2 wks, and no treatment group. A total of 1416 cows and 804 heifers in 5 herds calved during the study period. CM was diagnosed in 18.6% (inter farm range; 15.2-23.5%) and 30% (19.4-42.3%) of cows and heifers, respectively. RFM was diagnosed in 13.1% (9.4-18.1%) and 9.2% (3.6-13.8%) of cows and heifers, respectively. Conception rates after first insemination were 38.3%, 42.5% and 18% in normal, treated and non-treated CM cows, respectively. Numbers of days open were 140.5, 136.2 and 165.5 in normal, treated and non-treated CM cows, respectively. Based on 305-d corrected milk yield, cows and heifers affected by RFM and CM produced 300-500kg less milk compared with their normal herd mates. Cows treated for CM produced 654kg more milk per 305-d corrected lactation compared to non-treated control cows. Treatment of RFM had no effect on reproductive performance or milk production. In conclusion, i.u. chlortetracycline treatment was proven to prevent the detrimental effect of CM on reproductive performance in heifers and cows and on milk production in cows only.  相似文献   
80.
Ionic liquids (ILs) are a class of diverse organic salts with relatively low melting points (below 100°C) which have attracted considerable interest as a promising "green" substitute for organic solvents. The broad solvation properties of ILs and their high solubility in water, however, present health risks, in particular since it was shown that many ILs exhibit cytotoxic properties. In this context, interactions of ILs with the cellular membrane are believed to constitute a primary culprit for toxicity. We present a comprehensive biophysical and microscopy study of membrane interactions of a series of ILs having different side-chain compositions and lengths, and cationic head-group structures and orientations. The experimental data reveal that the ILs studied exhibit distinct mechanisms of membrane binding, insertion, and disruption which could be correlated with their biological activities. The results indicate, in particular, that both the side chain composition and particularly the head-groups of ILs constitute determinants for membrane activity and consequent cell toxicity. This work suggests that tuning membrane interactions of ILs should be an important factor for designing future compounds with benign environmental impact.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号