首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   603篇
  免费   40篇
  2023年   4篇
  2022年   11篇
  2021年   13篇
  2020年   10篇
  2019年   13篇
  2018年   10篇
  2016年   10篇
  2015年   22篇
  2014年   25篇
  2013年   18篇
  2012年   45篇
  2011年   36篇
  2010年   18篇
  2009年   18篇
  2008年   32篇
  2007年   25篇
  2006年   29篇
  2005年   26篇
  2004年   29篇
  2003年   32篇
  2002年   27篇
  2001年   16篇
  2000年   17篇
  1999年   9篇
  1998年   4篇
  1997年   4篇
  1996年   4篇
  1991年   9篇
  1990年   6篇
  1989年   8篇
  1988年   7篇
  1987年   7篇
  1986年   2篇
  1985年   5篇
  1984年   4篇
  1983年   3篇
  1982年   4篇
  1981年   4篇
  1980年   8篇
  1979年   8篇
  1978年   4篇
  1977年   10篇
  1976年   5篇
  1975年   2篇
  1974年   4篇
  1973年   4篇
  1972年   10篇
  1971年   2篇
  1969年   3篇
  1959年   2篇
排序方式: 共有643条查询结果,搜索用时 15 毫秒
571.
The continuous growth of the plant embryo is interrupted during the seed maturation processes which results in a dormant seed. The embryo continues development after germination when it grows into a seedling. The embryo growth phase starts after morphogenesis and ends when the embryo fills the seed sac. Very little is known about the processes regulating this phase. We describe mutants that affect embryo growth in two sequential developmental stages. Firstly, embryo growth arrest is regulated by the FUS3/LEC type genes, as mutations in these genes cause a continuation of growth in immature embryos. Secondly, a later stage of embryo dormancy is regulated by ABI3 and abscisic acid; abi3 and aba1 mutants exhibit premature germination only after embryos mature. Mutations affecting both developmental stages result in an additive phenotype and double mutants are highly viviparous. Embryo growth arrest is regulated by cell division activities in both the embryo and the endosperm, which are gradually switched off at the mature embryo stage. In the fus3/lec mutants, however, cell division in both the embryo and endosperm is not arrested, but rather is prolonged throughout seed maturation. Furthermore ectopic cell division occurs in seedlings. Our results indicate that seed dormancy is secured via at least two sequential developmental processes: embryo growth arrest, which is regulated by cell division and embryo dormancy.  相似文献   
572.
Cell division activity during apical hook development   总被引:7,自引:0,他引:7  
Raz V  Koornneef M 《Plant physiology》2001,125(1):219-226
Growth during plant development is predominantly governed by the combined activities of cell division and cell elongation. The relative contribution of both activities controls the growth of a tissue. A fast change in growth is exhibited at the apical hypocotyl of etiolated seedlings where cells grow at different rates to form a hook-like structure, which is traditionally assumed to result from differential cell elongation. Using new tools we show asymmetric distribution of cell division during early stages of hook development. Cell divisions in the apical hook were predominantly found in subepidermal layers during an early step of hook development, but were absent in mutants exhibiting a hookless phenotype. In addition, during exaggeration of hook curvature, which is mediated by ethylene, a rapid change in the combined activities of cell division and cell elongation was detected. Our results indicate a fast change in cell division activity during apical hook development. We suggest that cell division together with cell elongation contributes to apical hook growth. Our results emphasize the change in the relative contribution of cell division and cell elongation in a fast growing structure like the apical hook.  相似文献   
573.
TCR interaction with peptide-MHC complexes triggers migration of protein kinases, actin-binding proteins, and other accessory molecules to the T cell/APC synapse. We used confocal immunofluorescence methods to show that the adapter protein LAT (linker for activation of T cells) and the guanine nucleotide exchange factor Vav also move to the APC interface in mouse CD4 T cells conjugated to anti-CD3 hybridoma cells, and in TCR-transgenic CD4 cells conjugated to APC bearing agonist (but not closely related nonagonist) peptides. The proportion of CD4+ T cells able to relocalize LAT or Vav, or to relocate cytoplasmic NT-AT (NF-ATc) from cytoplasm to nucleus, declines about 2-fold in aged mice. The decline in LAT relocalization is accompanied by a similar decline in tyrosine phosphorylation of LAT in CD4 cells stimulated by CD3/CD4 cross-linking. Two-color experiments show that LAT redistribution is strongly associated with relocalization of both NF-ATc and protein kinase C-theta among individual cells. LAT migration to the immunological synapse depends on actin polymerization as well as on activity of Src family kinases, but aging leads to only a small change in the percentage of CD4 cells that redistribute F-actin to the site of APC contact. These results suggest that defects in the ability of T cells from aged donors to move kinase substrates and coupling factors, including LAT and Vav, into the T cell/APC contact region may contribute to the decline with age in NF-ATc-dependent gene expression, and thus to defects in T cell clonal expansion.  相似文献   
574.
A method utilizing electrospray ionization coupled with tandem mass spectrometry was developed as a facile and rapid method to identify and quantify lipid remodeling in vivo. Electrospray/tandem mass spectrometric analyses were performed on lipids isolated from liver tissue and resident peritoneal cells from essential fatty acid sufficient and deficient mice. Essential fatty acid deficiency was chosen as the paradigm to evaluate the methodology because it epitomizes the most extreme dietary means of altering fatty acid composition of virtually all cellular lipid species. Qualitative and quantitative changes were measured in the phospholipid and cholesterol ester species directly in the chloroform/methanol lipid extract without any prior chromatographic separation. Lipid remodeling in liver and peritoneal cells from essential fatty acid deficient mice was qualitatively similar in cholesterol ester, phosphatidylcholine, and phosphatidylethanolamine. The monoenoic fatty acids palmitoleic acid (16:1 n-7) and oleic acid (18:1 n-9) were increased markedly, whereas all n-6 and n-3 polyunsaturated fatty acids were nearly depleted in phospholipid and cholesterol ester species. The n-9 polyunsaturated fatty acid surrogate, Mead acid (20:3 n-9), substituted for arachidonic acid (20:4 n-6) and docosahexaenoic acid (22:6 n-3) in phospholipid, but not in cholesterol ester, species. Another notable difference was that adrenic acid (22:4 n-6) and docosapentaenoic acid (22:5 n-6), both metabolites of arachidonic acid, accumulated in phospholipid and cholesterol ester species of peritoneal cells, but not in liver cells, of essential fatty acid sufficient mice. The overall body of data presented illustrates the implementation of electrospray/tandem mass spectrometry as a method for facile and direct quantification of changes in lipid species during lipid metabolic studies.  相似文献   
575.
Immunomodulatory functions of type I interferons   总被引:1,自引:0,他引:1  
Interferon-α (IFNα) and IFNβ, collectively known as type I IFNs, are the major effector cytokines of the host immune response against viral infections. However, the production of type I IFNs is also induced in response to bacterial ligands of innate immune receptors and/or bacterial infections, indicating a broader physiological role for these cytokines in host defence and homeostasis than was originally assumed. The main focus of this Review is the underappreciated immunomodulatory functions of type I IFNs in health and disease. We discuss their function in the regulation of innate and adaptive immune responses, the response to bacterial ligands, inflammasome activation, intestinal homeostasis and inflammatory and autoimmune diseases.  相似文献   
576.
Elongation in protein translation is strongly dependent on the availability of mature transfer RNAs (tRNAs). The relative concentrations of the tRNA isoacceptors determine the translation efficiency in unicellular organisms. However, the degree of correspondence of codons and the relevant tRNA isoacceptors serves as an estimator for translation efficiency in all organisms. In this study, we focus on the translational capacity of the human proteome. We show that the correspondence between the codon usage and tRNAs can be improved by combining experimental measurements with the genomic copy number of isoacceptor groups. We show that there are technologies of tRNA measurements that are useful for our analysis. However, fragments of tRNAs do not agree with translational capacity. It was shown that there is a significant increase in the absolute levels of tRNA genes in cancerous cells in comparison to healthy cells. However, we find that the relative composition of tRNA isoacceptors in healthy, cancerous, or transformed cells remains almost identical. This result may indicate that maintaining the relative tRNA composition in cancerous cells is advantageous via its stabilizing of the effectiveness of translation.  相似文献   
577.
Regev T  Myers N  Zarivach R  Fishov I 《PloS one》2012,7(5):e36441
DnaA initiates chromosome replication in most known bacteria and its activity is controlled so that this event occurs only once every cell division cycle. ATP in the active ATP-DnaA is hydrolyzed after initiation and the resulting ADP is replaced with ATP on the verge of the next initiation. Two putative recycling mechanisms depend on the binding of DnaA either to the membrane or to specific chromosomal sites, promoting nucleotide dissociation. While there is no doubt that DnaA interacts with artificial membranes in vitro, it is still controversial as to whether it binds the cytoplasmic membrane in vivo. In this work we looked for DnaA-membrane interaction in E. coli cells by employing cell fractionation with both native and fluorescent DnaA hybrids. We show that about 10% of cellular DnaA is reproducibly membrane-associated. This small fraction might be physiologically significant and represent the free DnaA available for initiation, rather than the vast majority bound to the datA reservoir. Using the combination of mCherry with a variety of DnaA fragments, we demonstrate that the membrane binding function is delocalized on the surface of the protein's domain III, rather than confined to a particular sequence. We propose a new binding-bending mechanism to explain the membrane-induced nucleotide release from DnaA. This mechanism would be fundamental to the initiation of replication.  相似文献   
578.
Epidemiological data on community acquired methicillin-resistant-Staphylococcus aureus (CA-MRSA) carriage and infection in the Middle-East region is scarce with only few reports in the Israeli and Palestinian populations. As part of a Palestinian-Israeli collaborative research, we have conducted a cross-sectional survey of nasal S. aureus carriage in healthy children and their parents throughout the Gaza strip. Isolates were characterized for antibiotic susceptibility, mec gene presence, PFGE, spa type, SCCmec-type, presence of PVL genes and multi-locus-sequence-type (MLST). S. aureus was carried by 28.4% of the 379 screened children-parents pairs. MRSA was detected in 45% of S. aureus isolates, that is, in 12% of the study population. A single ST22-MRSA-IVa, spa t223, PVL-gene negative strain was detected in 64% of MRSA isolates. This strain is typically susceptible to all non-β-lactam antibiotics tested. The only predictor for MRSA carriage in children was having an MRSA carrier-parent (OR = 25.5, P = 0.0004). Carriage of the Gaza strain was not associated with prior hospitalization. The Gaza strain was closely related genetically to a local MSSA spa t223 strain and less so to EMRSA15, one of the pandemic hospital-acquired-MRSA clones, scarcely reported in the community. The rapid spread in the community may be due to population determinants or due to yet unknown advantageous features of this particular strain.  相似文献   
579.

Background

Developmental instability of shelled gastropods is measured as deviations from a perfect equiangular (logarithmic) spiral. We studied six species of gastropods at ‘Evolution Canyons I and II’ in Carmel and the Galilee Mountains, Israel, respectively. The xeric, south-facing, ‘African’ slopes and the mesic, north-facing, ‘European’ slopes have dramatically different microclimates and plant communities. Moreover, ‘Evolution Canyon II’ receives more rainfall than ‘Evolution Canyon I.’

Methodology/Principal Findings

We examined fluctuating asymmetry, rate of whorl expansion, shell height, and number of rotations of the body suture in six species of terrestrial snails from the two ‘Evolution Canyons.’ The xeric ‘African’ slope should be more stressful to land snails than the ‘European’ slope, and ‘Evolution Canyon I’ should be more stressful than ‘Evolution Canyon II.’ Only Eopolita protensa jebusitica showed marginally significant differences in fluctuating helical asymmetry between the two slopes. Contrary to expectations, asymmetry was marginally greater on the ‘European’ slope. Shells of Levantina spiriplana caesareana at ‘Evolution Canyon I,’ were smaller and more asymmetric than those at ‘Evolution Canyon II.’ Moreover, shell height and number of rotations of the suture were greater on the north-facing slopes of both canyons.

Conclusions/Significance

Our data is consistent with a trade-off between drought resistance and thermoregulation in snails; Levantina was significantly smaller on the ‘African’ slope, for increasing surface area and thermoregulation, while Eopolita was larger on the ‘African’ slope, for reducing water evaporation. In addition, ‘Evolution Canyon I’ was more stressful than Evolution Canyon II’ for Levantina.  相似文献   
580.
Aging is associated with appearance of white matter hyperintensities (WMH) on MRI scans. Vascular risk and inflammation, which increase with age, may contribute to white matter deterioration and proliferation of WMH. We investigated whether circulating biomarkers and genetic variants associated with elevated vascular risk and inflammation are associated with WMH volume in healthy adults (144 volunteers, 44-77 years of age). We examined association of WMH volume with age, sex, hypertension, circulating levels of total plasma homocysteine (tHcy), cholesterol (low-density lipoprotein), and C-reactive protein (CRP), and four polymorphisms related to vascular risk and inflammation: Apolipoprotein ε (ApoE ε2,3,4), Angiotensin-Converting Enzyme insertion/deletion (ACE I/D), methylenetetrahydrofolate reductase (MTHFR) C677T, C-reactive protein (CRP)-286C>A>T, and interleukin-1β (IL-1β) C-511T. We found that larger WMH volume was associated with advanced age, hypertension, and elevated levels of homocysteine and CRP but not with low-density lipoprotein levels. Homozygotes for IL-1β-511T allele and carriers of CRP-286T allele that are associated with increased inflammatory response had larger WMH than the other allelic combinations. Carriers of the APOE ε2 allele had larger frontal WMH than ε3 homozygotes and ε4 carriers did. Thus, in healthy adults, who are free of neurological and vascular disease, genetic variants that promote inflammation and elevated levels of vascular risk biomarkers can contribute to brain abnormalities. This article is part of a Special Issue entitled: Imaging Brain Aging and Neurodegenerative disease.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号