首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   6273篇
  免费   607篇
  国内免费   1篇
  6881篇
  2021年   61篇
  2019年   53篇
  2018年   76篇
  2017年   57篇
  2016年   113篇
  2015年   196篇
  2014年   204篇
  2013年   302篇
  2012年   337篇
  2011年   332篇
  2010年   263篇
  2009年   222篇
  2008年   350篇
  2007年   348篇
  2006年   355篇
  2005年   365篇
  2004年   339篇
  2003年   329篇
  2002年   298篇
  2001年   86篇
  2000年   71篇
  1999年   84篇
  1998年   85篇
  1997年   70篇
  1996年   67篇
  1995年   58篇
  1994年   63篇
  1993年   73篇
  1992年   74篇
  1991年   64篇
  1990年   80篇
  1989年   59篇
  1988年   60篇
  1987年   49篇
  1986年   45篇
  1985年   69篇
  1984年   68篇
  1983年   52篇
  1982年   52篇
  1981年   47篇
  1980年   63篇
  1979年   47篇
  1978年   47篇
  1977年   47篇
  1976年   51篇
  1975年   49篇
  1974年   42篇
  1973年   44篇
  1972年   39篇
  1971年   36篇
排序方式: 共有6881条查询结果,搜索用时 0 毫秒
91.
Targeting pathogenic T cells with Ag-specific tolerizing DNA vaccines encoding autoantigens is a powerful and feasible therapeutic strategy for Th1-mediated autoimmune diseases. However, plasmid DNA contains abundant unmethylated CpG motifs, which induce a strong Th1 immune response. We describe here a novel approach to counteract this undesired side effect of plasmid DNA used for vaccination in Th1-mediated autoimmune diseases. In chronic relapsing experimental autoimmune encephalomyelitis (EAE), combining a myelin cocktail plus IL-4-tolerizing DNA vaccine with a suppressive GpG oligodeoxynucleotide (GpG-ODN) induced a shift of the autoreactive T cell response toward a protective Th2 cytokine pattern. Myelin microarrays demonstrate that tolerizing DNA vaccination plus GpG-ODN further decreased anti-myelin autoantibody epitope spreading and shifted the autoreactive B cell response to a protective IgG1 isotype. Moreover, the addition of GpG-ODN to tolerizing DNA vaccination therapy effectively reduced overall mean disease severity in both the chronic relapsing EAE and chronic progressive EAE mouse models. In conclusion, suppressive GpG-ODN effectively counteracted the undesired CpG-induced inflammatory effect of a tolerizing DNA vaccine in a Th1-mediated autoimmune disease by skewing both the autoaggressive T cell and B cell responses toward a protective Th2 phenotype. These results demonstrate that suppressive GpG-ODN is a simple and highly effective novel therapeutic adjuvant that will boost the efficacy of Ag-specific tolerizing DNA vaccines used for treating Th1-mediated autoimmune diseases.  相似文献   
92.
We here report the influence of the cell cycle abrogator UCN-01 on RKO human colon carcinoma cells differing in p53 status following exposure to two DNA damaging agents, the topoisomerase inhibitors etoposide and camptothecin. Cells were treated with the two drugs at the IC90 concentration for 24 h followed by post-incubation in drug-free medium. RKO cells expressing wild-type, functional p53 arrested the cell cycle progression in both the G1 and G2 phases of the cell cycle whereas the RKO/E6 cells, which lack functional p53, only arrested in the G2 phase. Growth-arrested cells did not resume proliferation even after prolonged incubation in drug-free medium (up to 96 h). To evaluate the importance of the cell cycle arrest on cellular survival, a non-toxic dose of UCN-01 (100 nM) was added to the growth-arrested cells. The addition of UCN-01 was accompanied by mitotic entry as revealed by the appearance of condensed chromatin and the MPM-2 phosphoepitope, which is characteristic for mitotic cells. G2 exit and mitotic transit was accompanied by a rapid activation of caspase-3 and apoptotic cell death. The influence of UCN-01 on the long-term cytotoxic effects of the two drugs was also determined. Unexpectedly, abrogation of the G2 arrest had no influence on the overall cytotoxicity of either drug. In contrast, addition of UCN-01 to cisplatin-treated RKO and RKO/E6 cells greatly increased the cytotoxic effects of the alkylating agent. These results strongly suggest that even prolonged cell cycle arrest in the G2 phase of the cell cycle is not necessarily coupled to efficient DNA repair and enhanced cellular survival as generally believed.  相似文献   
93.
High-throughput structural biology is a focus of a number of academic and pharmaceutical laboratories around the world. The use of X-ray crystallography in these efforts is critically dependent on high-throughput protein crystallization. The application of current protocols yields crystal leads for approximately 30% of the input proteins and well-diffracting crystals for a smaller fraction. Increasing the success rate will require a multidisciplinary approach that must invoke techniques from molecular biology, protein biochemistry, biophysics, artificial intelligence, and automation.  相似文献   
94.
MEK is a dual-specificity kinase that activates the extracellular signal-regulated kinase (ERK) mitogen-activated protein (MAP) kinase upon agonist binding to receptors. The ERK/MAP kinase cascade is involved in cell fate determination in many organisms. In mammals, this pathway is proposed to regulate cell growth and differentiation. Genetic studies have shown that although a single Mek gene is present in Caenorhabditis elegans, Drosophila melanogaster, and Xenopus laevis, two Mek homologs, Mek1 and Mek2, are present in the mammalian cascade. The inactivation of the Mek1 gene leads to embryonic lethality and has revealed the unique role played by Mek1 during embryogenesis. To investigate the biological function of the second homolog, we have generated mice deficient in Mek2 function. Mek2 mutant mice are viable and fertile, and they do not present flagrant morphological alteration. Although several components of the ERK/MAP kinase cascade have been implicated in thymocyte development, no such involvement was observed for MEK2, which appears to be nonessential for thymocyte differentiation and T-cell-receptor-induced proliferation and apoptosis. Altogether, our findings demonstrate that MEK2 is not necessary for the normal development of the embryo and T-cell lineages, suggesting that the loss of MEK2 can be compensated for by MEK1.  相似文献   
95.
96.
97.
Only one drug is currently available for the treatment and control of schistosomiasis and the increasing risk of selecting strains of schistosome that are resistant to praziquantel means that the development of new drugs is urgent. With this objective we have chosen to target the enzymes modifying histones and in particular the histone acetyltransferases and histone deacetylases (HDAC). Inhibitors of HDACs (HDACi) are under intense study as potential anti-cancer drugs and act via the induction of cell cycle arrest and/or apoptosis. Schistosomes like other parasites can be considered as similar to tumours in that they maintain an intense metabolic activity and rate of cell division that is outside the control of the host. We have shown that HDACi can induce apoptosis and death of schistosomes maintained in culture and have set up a consortium (Schistosome Epigenetics: Targets, Regulation, New Drugs) funded by the European Commission with the aim of developing inhibitors specific for schistosome histone modifying enzymes as novel lead compounds for drug development.  相似文献   
98.
Wong KY  So CC  Loong F  Chung LP  Lam WW  Liang R  Li GK  Jin DY  Chim CS 《PloS one》2011,6(4):e19027
miR-124-1 is a tumour suppressor microRNA (miR). Epigenetic deregulation of miRs is implicated in carcinogenesis. Promoter DNA methylation and histone modification of miR-124-1 was studied in 5 normal marrow controls, 4 lymphoma, 8 multiple myeloma (MM) cell lines, 230 diagnostic primary samples of acute myeloid leukaemia (AML), acute lymphoblastic leukaemia (ALL), chronic myeloid leukaemia (CML), chronic lymphocytic leukaemia (CLL), MM, and non-Hodgkin's lymphoma (NHL), and 53 MM samples at stable disease or relapse. Promoter of miR-124-1 was unmethylated in normal controls but homozygously methylated in 4 of 4 lymphoma and 4 of 8 myeloma cell lines. Treatment of 5-Aza-2'-deoxycytidine led to miR-124-1 demethylation and re-expression of mature miR-124, which also associated with emergence of euchromatic trimethyl H3K4 and consequent downregulation of CDK6 in myeloma cells harboring homozygous miR-124-1 methylation. In primary samples at diagnosis, miR-124-1 methylation was absent in CML but detected in 2% each of MM at diagnosis and relapse/progression, 5% ALL, 15% AML, 14% CLL and 58.1% of NHL (p<0.001). Amongst lymphoid malignancies, miR-124-1 was preferentially methylated in NHL than MM, CLL or ALL. In primary lymphoma samples, miR-124-1 was preferentially hypermethylated in B- or NK/T-cell lymphomas and associated with reduced miR-124 expression. In conclusion, miR-124-1 was hypermethylated in a tumour-specific manner, with a heterochromatic histone configuration. Hypomethylation led to partial restoration of euchromatic histone code and miR re-expression. Infrequent miR-124-1 methylation detected in diagnostic and relapse MM samples showed an unimportant role in MM pathogenesis, despite frequent methylation found in cell lines. Amongst haematological cancers, miR-124-1 was more frequently hypermethylated in NHL, and hence warrants further study.  相似文献   
99.
Submergence strongly stimulates petiole elongation in Rumex palustris, and ethylene accumulation initiates and maintains this response in submerged tissues. cDNAs from R. palustris corresponding to a 1-aminocyclopropane-1-carboxylate (ACC) oxidase gene (RP-ACO1) were isolated from elongating petioles and used to study the expression of the corresponding gene. An increase in RP-ACO1 messenger was observed in the petioles and lamina of elongating leaves 2 h after the start of submergence. ACC oxidase enzyme activity was measured in homogenates of R. palustris shoots, and a relevant increase was observed within 12 h under water with a maximum after 24 h. We have shown previously that the ethylene production rate of submerged shoots does not increase significantly during the first 24 h of submergence (L.A.C.J. Voesenek, M. Banga, R. H. Thier, C.M. Mudde, F.M. Harren, G.W.M. Barendse, C.W.P.M. Blom [1993] Plant Physiol 103: 783-791), suggesting that under these conditions ACC oxidase activity is inhibited in vivo. We found evidence that this inhibition is caused by a reduction of oxygen levels. We hypothesize that an increased ACC oxidase enzyme concentration counterbalances the reduced enzyme activity caused by low oxygen concentration during submergence, thus sustaining ethylene production under these conditions. Therefore, ethylene biosynthesis seems to be limited at the level of ACC oxidase activity rather than by ACC synthase in R. palustris during submergence.  相似文献   
100.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号