首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   184篇
  免费   39篇
  2021年   1篇
  2020年   1篇
  2019年   1篇
  2017年   1篇
  2016年   2篇
  2015年   9篇
  2014年   13篇
  2013年   8篇
  2012年   13篇
  2011年   14篇
  2010年   13篇
  2009年   7篇
  2008年   12篇
  2007年   5篇
  2006年   7篇
  2005年   7篇
  2004年   7篇
  2003年   10篇
  2002年   3篇
  2001年   9篇
  2000年   3篇
  1999年   5篇
  1998年   3篇
  1997年   6篇
  1996年   4篇
  1993年   2篇
  1992年   4篇
  1991年   4篇
  1990年   7篇
  1989年   3篇
  1988年   2篇
  1987年   5篇
  1986年   2篇
  1985年   4篇
  1984年   1篇
  1983年   2篇
  1981年   1篇
  1978年   3篇
  1975年   2篇
  1974年   2篇
  1972年   2篇
  1971年   4篇
  1970年   2篇
  1969年   2篇
  1968年   2篇
  1967年   2篇
  1964年   1篇
排序方式: 共有223条查询结果,搜索用时 15 毫秒
181.
Summary Plantago ovata Forsk (commonly known as Isabgul) is an economically important medicinal plant. In the present investigation, in vitro plant regeneration of P. ovata was attempted through somatic embryogenesis. Casein hydrolysate and coconut water were used in different concentrations in Murashige and Skoog medium along with 1-naphthaleneacetic acid and N6-benzyladenine to increase the amount of callus and number of somatic embryos. Light and scanning electron microscopic studies followed the developmental stages of embryo formation. Results indicated that optimum concentrations of casein hydrolysate and coconut water are useful for promoting the growth of embryogenic cultures. However, a supra-optimal dose of casein hydrolysate and coconut water induced polyphenol synthesis and caused browning of callus and also eventual death of embryos. The use of additives such as coconut water and casein hydrolysate promotes large-scale production of P. ovata through in vitro somatic embryogenesis.  相似文献   
182.
183.
184.
Archaea are expected to be highly repair proficient since they survived the vicious onslaught of radiation damage at the time of their early appearance. The DNA double strand break repairing ability of mesophilic archaea Methanosarcina barkeri (DSM 804) was studied using (7)Li, (12)C and (16)O heavy ions and compared with that of (60)Co gamma-rays. They can repair double strand breaks and, as in eukaryotes, the nature as well as extent of induction and its subsequent repair were dependent on the linear energy transfer of the radiation source.  相似文献   
185.
Models of DNA replication in yeast and Xenopus suggest that Mcm10p is required to generate the pre-initiation complex as well as progression of the replication fork during the elongation of DNA chains. In this report, we show that the Schizosaccharomyces pombe Mcm10p/Cdc23p binds to the S. pombe DNA polymerase (pol) alpha-primase complex in vitro by interacting specifically with the catalytic p180 subunit and stimulates DNA synthesis catalyzed by the pol alpha-primase complex with various primed DNA templates. We investigated the mechanism by which Mcm10p activates the polymerase activity of the pol alpha-primase complex by generating truncated derivatives of the full-length 593-amino acid Mcm10p. Their ability to stimulate pol alpha polymerase activity and bind to single-stranded DNA and to pol alpha were compared. Concomitant with increased deletion of the N-terminal region (from amino acids 95 to 415), Mcm10p derivatives lost their ability to stimulate pol alpha polymerase activity and bind to single-stranded DNA. Truncated derivatives of Mcm10p containing amino acids 1-416 retained the pol alpha binding activity, whereas the C terminus, amino acids 496-593, did not. These results demonstrate that both the single-stranded DNA binding and the pol alpha binding properties of Mcm10p play important roles in the activation. In accord with these findings, Mcm10p facilitated the binding of pol alpha-primase complex to primed DNA and formed a stable complex with pol alpha-primase on primed templates. A mutant that failed to activate or bind to DNA and pol alpha, was not observed in this complex. We suggest that the interaction of Mcm10p with the pol alpha-primase complex, its binding to single-stranded DNA, and its activation of the polymerase complex together contribute to its role in the elongation phase of DNA replication.  相似文献   
186.
Recently we showed that the Schizosaccharomyces pombe ddb1 gene plays a role in S phase progression. A mutant S. pombe strain lacking expression of the ddb1 gene exhibited slow replication through both early and late regions causing a slow S phase phenotype. We attributed the phenotypes in the ddb1 strain to an increased activity of the replication checkpoint kinase Cds1. However, the basis for a high basal Cds1 activity in the ddb1 strain was not clear. It was shown that Ddb1 associates with the Cop9/signalosome. Moreover, the phenotypes of the Deltaddb1 strain are remarkably similar to the Deltacsn1 (or Deltacsn2) strain that lacks expression of the Csn1 (or Csn2) subunit of the Cop9/signalosome. Cop9/signalosome cooperates with Pcu4 to induce proteolysis of Spd1, which inhibits DNA replication by inhibiting ribonucleotide reductase. Therefore, we investigated whether Ddb1 is required for the proteolysis of Spd1. Here we show that a S. pombe strain lacking expression of Ddb1 fails to induce proteolysis of Spd1 in S phase and after DNA damage. Moreover, deletion of the spd1 gene attenuates the Cds1 kinase activity in cells lacking the expression of ddb1, suggesting that an accumulation of Spd1 results in the increase of Cds1 activity in the Deltaddb1 strain. In addition, the double mutant lacking spd1 and ddb1 no longer exhibits the growth defects and DNA damage sensitivity observed in the Deltaddb1 strain. Our results establish an essential role of Ddb1 in the proteolysis of Spd1. In addition, the observation provides evidence for a functional link between Ddb1 and the Cop9/signalosome.  相似文献   
187.
188.
189.
190.

Introduction

Interleukin-22 (IL-22) is a cytokine of IL-10 family with significant proliferative effect on different cell lines. Immunopathological role of IL-22 has been studied in rheumatoid arthritis (RA) and psoriasis. Here we are reporting the functional role of IL-22 in the inflammatory and proliferative cascades of psoriatic arthritis (PsA).

Method

From peripheral blood and synovial fluid (SF) of PsA (n = 15), RA (n = 15) and osteoarthritis (OA, n = 15) patients, mononuclear cells were obtained and magnetically sorted for CD3+ T cells. Fibroblast like synoviocytes (FLS) were isolated from the synovial tissue of PsA (n = 5), RA (n = 5) and OA (n = 5) patients. IL-22 levels in SF and serum were measured by enzyme linked immunosorbent assay (ELISA). Proliferative effect of human recombinant IL-22 (rIL-22) on FLS was assessed by MTT (3-(4, 5-Dimethylthiazol-2-yl)-2, 5-diphenyltetrazolium bromide, a yellow tetrazole) and CFSE dilution (Carboxyfluorescein succinimidyl ester) assays. Expression of IL-22Rα1 in FLS was determined by western blot.

Results

IL-22 levels were significantly elevated in SF of PsA patients (17.75 ± 3.46 pg/ml) compared to SF of OA (5.03 ± 0.39 pg/ml), p < 0.001. In MTT and CFSE dilution assays, rIL-22 (MTT, OD: 1.27 ± 0.06) induced significant proliferation of FLS derived from PsA patients compared to media (OD: 0.53 ± 0.02), p < 0.001. In addition, rIL-22 induced significantly more proliferation of FLS in presence of TNF-α. IL-22Rα1 was expressed in FLS of PsA, RA and OA patients. Anti IL-22R antibody significantly inhibited the proliferative effect of rIL-22. Further we demonstrated that activated synovial T cells of PsA and RA patients produced significantly more IL-22 than those of OA patients.

Conclusion

SF of PsA patients have higher concentration of IL-22 and rIL-22 induced marked proliferation of PsA derived FLS. Moreover combination of rIL-22 and TNF-α showed significantly more proliferative effect on FLS. IL-22Rα1 was expressed in FLS. Successful inhibition of IL-22 induced FLS proliferation by anti IL-22R antibody suggests that blocking of IL-22/IL-22R interaction may be considered as a novel therapeutic target for PsA.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号