首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   184篇
  免费   39篇
  2021年   1篇
  2020年   1篇
  2019年   1篇
  2017年   1篇
  2016年   2篇
  2015年   9篇
  2014年   13篇
  2013年   8篇
  2012年   13篇
  2011年   14篇
  2010年   13篇
  2009年   7篇
  2008年   12篇
  2007年   5篇
  2006年   7篇
  2005年   7篇
  2004年   7篇
  2003年   10篇
  2002年   3篇
  2001年   9篇
  2000年   3篇
  1999年   5篇
  1998年   3篇
  1997年   6篇
  1996年   4篇
  1993年   2篇
  1992年   4篇
  1991年   4篇
  1990年   7篇
  1989年   3篇
  1988年   2篇
  1987年   5篇
  1986年   2篇
  1985年   4篇
  1984年   1篇
  1983年   2篇
  1981年   1篇
  1978年   3篇
  1975年   2篇
  1974年   2篇
  1972年   2篇
  1971年   4篇
  1970年   2篇
  1969年   2篇
  1968年   2篇
  1967年   2篇
  1964年   1篇
排序方式: 共有223条查询结果,搜索用时 890 毫秒
111.
112.
Apoptotic death pathways are frequently activated by death ligand induction and subsequent activation of the membrane proximal signaling module. Death receptors cluster upon binding to death ligands, leading to formation of a membrane proximal death-inducing-signaling-complex (DISC). In this membrane proximal signalosome, initiator caspases (caspase 8) are processed resulting in activation of both type 1 and type 2 pathways of apoptosis signaling. How the type 1/type 2 choice is made is an important question in the systems biology of apoptosis signaling. In this study, we utilize a Monte Carlo based in silico approach to elucidate the role of membrane proximal signaling module in the type 1/type 2 choice of apoptosis signaling. Our results provide crucial mechanistic insights into the formation of DISC signalosome and caspase 8 activation. Increased concentration of death ligands was shown to correlate with increased type 1 activation. We also study the caspase 6 mediated system level feedback activation of apoptosis signaling and its role in the type 1/type 2 choice. Our results clarify the basis of cell-to-cell stochastic variability in apoptosis activation and ramifications of this issue is further discussed in the context of therapies for cancer and neurodegenerative disorders.  相似文献   
113.
VopK, a type III effector protein, has been implicated in the pathogenesis of Vibrio cholerae strains belonging to diverse serogroups. Ectopic expression of this protein exhibits strong toxicity in yeast model system. In order to map critical residues in VopK, we scanned the primary sequence guided by available data on various toxins and effector proteins. Our in silico analysis of VopK indicated the presence of predicted MCF1-SHE (SHxxxE) serine peptidase domain at the C-terminus region of the protein. Substitution of each of the predicted catalytic triad residues namely Ser314, His353 and Glu357 with alanine resulted in recombinant VopK proteins varying in lethality as evaluated in yeast model system. We observed that replacement of glutamate357 to alanine causes complete loss in toxicity while substitutions of serine314 and histidine353 with alanine exhibited partial loss in toxicity without affecting the stability of variants. In addition, replacement of another conserved serine residue at position 354 (S354) within predicted S314H353E357 did not affect toxicity of VopK. In essence, combined in silico and site directed mutagenesis, we have identified critical amino acids contributing to the lethal activity of VopK in yeast model system.  相似文献   
114.
115.
116.
Raychaudhuri S 《PloS one》2012,7(4):e34596
The micro-array profiling of micro-RNA has been performed in rat skeletal muscle tissues, isolated from male adult offspring of intrauterine plus postnatal growth restricted model (IPGR). Apparently, the GLUT4 mRNA expression in male sk. muscle was found to be unaltered in contrast to females. The over-expression of miR-29a and miR-23a in the experimental group of SMSP (Starved Mother Starved Pups) have been found to regulate the glucose transport activity with respect to their control counterparts CMCP (Control Mother Control Pups) as confirmed in rat L6 myoblast-myocyte cell culture system. The ex-vivo experimentation demonstrates an aberration in insulin signaling pathway in male sk. muscle that leads to the localization of the membrane-bound Glut4 protein. We have identified through a series of experiments one important protein factor SMAD4, a co-SMAD critical to the TGF-beta signaling pathway. This factor is targeted by miR-29a, as identified in an in vitro reporter-assay system in cell-culture experiment. The other micro-RNA, miR-23a, targets SMAD4 indirectly that seems to be critical in regulating insulin-dependent glucose transport activity. MicroRNA mimics, inhibitors and siRNA studies indicate the role of SMAD4 as inhibitory for glucose transport activities in normal physiological condition. The data demonstrate for the first time a critical function of microRNAs in fine-tuning the regulation of glucose transport in skeletal muscle. Chronic starved conditions (IPGR) in sk. muscle up-regulates microRNA changing the target protein expression patterns, such as SMAD4, to alter the glucose transport pathways for the survival. The innovative outcome of this paper identifies a critical pathway (TGF-beta) that may act negatively for the mammalian glucose transport machinery.  相似文献   
117.
In May 2011, the International Alliance for Biological Standardization, with the cooperation of WHO, FDA, and NIAID, organized a conference on adventitious agents that might be found in biological products using new technology (http://www.iabs.org/index.php/past-conference-reports/116-baltimore-2011-slides). The implications of such findings on risk assessment also were considered. Topics that were addressed included: a) current routine testing – what are we doing now?; b) recent advances in testing – what tests are being explored/applied?; c) examples of finding agents with “new” techniques; and d) risk assessment, including recent WHO activities. A draft algorithm for risk assessment was discussed in terms of its applicability to a variety of potential new agents and the possibilities for improving it.  相似文献   
118.
Genome-wide association studies (GWAS) have defined over 150 genomic regions unequivocally containing variation predisposing to immune-mediated disease. Inferring disease biology from these observations, however, hinges on our ability to discover the molecular processes being perturbed by these risk variants. It has previously been observed that different genes harboring causal mutations for the same Mendelian disease often physically interact. We sought to evaluate the degree to which this is true of genes within strongly associated loci in complex disease. Using sets of loci defined in rheumatoid arthritis (RA) and Crohn's disease (CD) GWAS, we build protein-protein interaction (PPI) networks for genes within associated loci and find abundant physical interactions between protein products of associated genes. We apply multiple permutation approaches to show that these networks are more densely connected than chance expectation. To confirm biological relevance, we show that the components of the networks tend to be expressed in similar tissues relevant to the phenotypes in question, suggesting the network indicates common underlying processes perturbed by risk loci. Furthermore, we show that the RA and CD networks have predictive power by demonstrating that proteins in these networks, not encoded in the confirmed list of disease associated loci, are significantly enriched for association to the phenotypes in question in extended GWAS analysis. Finally, we test our method in 3 non-immune traits to assess its applicability to complex traits in general. We find that genes in loci associated to height and lipid levels assemble into significantly connected networks but did not detect excess connectivity among Type 2 Diabetes (T2D) loci beyond chance. Taken together, our results constitute evidence that, for many of the complex diseases studied here, common genetic associations implicate regions encoding proteins that physically interact in a preferential manner, in line with observations in Mendelian disease.  相似文献   
119.
120.
HapR has been recognized as a quorum-sensing master regulator in Vibrio cholerae. Because it controls a plethora of disparate cellular events, the absence of a functional HapR affects the physiology of V. cholerae to a great extent. In the current study, we pursued an understanding of an observation of a natural protease-deficient non-O1, non-O139 variant V. cholerae strain V2. Intriguingly, a nonfunctional HapR (henceforth designated as HapR(V2)) harboring a substitution of glycine to aspartate at position 39 of the N-terminal hinge region has been identified. An in vitro gel shift assay clearly suggested the inability of HapR(V2) to interact with various cognate promoters. Reinstatement of glycine at position 39 restores DNA binding ability of HapR(V2) (HapR(V2G)), thereby rescuing the protease-negative phenotype of this strain. The elution profile of HapR(V2) and HapR(V2G) proteins in size-exclusion chromatography and their circular dichroism spectra did not reflect any significant differences to explain the functional discrepancies between the two proteins. To gain insight into the structure-function relationship of these two proteins, we acquired small/wide angle x-ray scattering data from samples of the native and G39D mutant. Although Guinier analysis and indirect Fourier transformation of scattering indicated only a slight difference in the shape parameters, structure reconstruction using dummy amino acids concluded that although HapR adopts a "Y" shape similar to its crystal structure, the G39D mutation in hinge drastically altered the DNA binding domains by bringing them in close proximity. This altered spatial orientation of the helix-turn-helix domains in this natural variant provides the first structural evidence on the functional role of the hinge region in quorum sensing-related DNA-binding regulatory proteins of Vibrio spp.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号