首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4656篇
  免费   501篇
  国内免费   4篇
  5161篇
  2021年   73篇
  2019年   47篇
  2018年   70篇
  2017年   54篇
  2016年   101篇
  2015年   116篇
  2014年   164篇
  2013年   197篇
  2012年   249篇
  2011年   263篇
  2010年   201篇
  2009年   137篇
  2008年   273篇
  2007年   242篇
  2006年   176篇
  2005年   180篇
  2004年   179篇
  2003年   161篇
  2002年   166篇
  2001年   98篇
  2000年   85篇
  1999年   91篇
  1998年   67篇
  1997年   54篇
  1996年   56篇
  1995年   48篇
  1994年   41篇
  1993年   46篇
  1992年   81篇
  1991年   86篇
  1990年   70篇
  1989年   73篇
  1988年   85篇
  1987年   53篇
  1986年   59篇
  1985年   51篇
  1984年   59篇
  1983年   50篇
  1982年   36篇
  1981年   39篇
  1980年   49篇
  1979年   49篇
  1978年   48篇
  1976年   46篇
  1975年   34篇
  1974年   34篇
  1973年   42篇
  1972年   33篇
  1970年   33篇
  1969年   33篇
排序方式: 共有5161条查询结果,搜索用时 15 毫秒
21.
22.
23.
Medicago truncatula (barrel medic) is an annual legume of agricultural and biological interest. In this report regeneration from isolated mesophyll protoplasts is described. A specifically developed, highly regenerable seed line is essential for regeneration. Other critical requirements for regeneration are the starting plant material, the use of agarose droplets incubated in a shallow layer of liquid medium, and protoplast density. Plants are grown in controlled environment conditions. Protoplasts are purified using a Percoll-based flotation procedure, then embedded in 100 l agarose droplets containing a basal medium plus 25 M NAA and 4 M BAP (the same medium as in the surrounding shallow liquid layer) to induce protoplast division. A protoplast density of 6–8×105 ml–1 is required for maximum colony formation. M. truncatula plants previously transformed for kanamycin resistance yielded embryogenic callus and also regenerated plants. Protoplasts from other annual Medicago (M.intertexta and M.scutellata) species readily form calli by the procedure we have described.Abbreviations BAP 6-benzylaminopurine - 2,4-D 2,4-dichlorophenoxyacetic acid - NAA 1-naphthaleneacetic acid  相似文献   
24.
Bloom's syndrome (BS) and EM9 cells both display elevated frequencies of sister chromatid exchange (SCE) following growth for two rounds of DNA replication in bromodeoxyuridine (BrdU)-containing medium. To learn whether hyperresponsiveness to BrdU itself might play a role in causing the SCE elevation, the effects of BrdU on two other parameters, cellular proliferation and chromosome disruption, were examined, comparing the responses of BS and normal lymphoblastoid cells and of EM9 and CHO cells. BS and normal cells responded similarly with respect to growth for 4 days in BrdU-containing medium (0, 1, 3, and 5 g/ml). Chromosome aberrrations were increased only slightly in the BS and normal cells after 2 days in BrdU. CHO cells responded to growth in BrdU-containing medium like BS and normal cells; however, little growth of EM9 was detected at any of the BrdU concentrations employed. CHO and EM9 cells also exhibited strikingly different amounts of chromosome damage following growth in BrdU. After 2 days in 1, 3, and 5 g/ml BrdU 21%, 46%, and 50%, respectively, of the CHO cells had chromosome aberrations in contrast to 92%, 96%, and 98% of the EM9 cells. Most of the aberrations in the BrdU-treated CHO cells consisted of what appeared to be polycentric and ring chromosomes or chromosomes exhibiting telomere association. Acentric fragments were absent from most cells with polycentric and ring chromosomes, indicating either that the abnormal chromosomes were formed during an earlier cell cycle or that the abnormal chromosomes represent a form of association in which the telomeres are apposed so tightly that the juncture between chromosomes cannot be identified microscopically. EM9 cells treated with BrdU exhibited many chromatid and isochromatid gaps and breaks as well as numerous quadriradial, triradial, and complex interchange configurations. In addition, the types of aberrations present in CHO cells also were increased greatly in number. The different responses of BS and EM9 cells to growth in BrdU suggest that the molecular defects in the two cell types are different.  相似文献   
25.
26.
27.
Sodium selenite (Na2SeO3) was tested for its sister-chromatid exchange (SCE)-inducing ability in human whole blood cultures and for the effect of its co-exposure with methyl methanesulfonate (MMS) or N-hydroxy-2-acetylaminofluorene (N-OH-AAF) on SCE frequency. Long exposure times (77 h and 96 h) to 3.95 X 10(-6) M Na2SeO3 resulted in cell death as measured by mitotic indices, but mitotic figures were present after exposure to higher concentrations for a shorter time (19 h). High Na2SeO3 concentrations (7.90 X 10(-6) and 1.19 X 10(-5) M) resulted in a three-fold increase in the SCE frequency above background level (6--7 SCEs/cell). Exposure of lymphocytes to 1 X 10(-4) M MMS for the last 19 h of culture yielded an average SCE frequency of 30.17 +/- 0.75 while a similar exposure to 2.7 X 10(-5) M N-OH-AAF resulted in 13.61 +/- 0.43 SCEs/cell. Simultaneous addition of the high Na2SeO3 concentrations and MMS or N-OH-AAF to the cultures resulted in SCE frequencies that were 25--30% and 11--17%, respectively, below the sum of the SCE frequencies produced by the individual compounds.  相似文献   
28.
When radioactive UDP-glucose is supplied to 1-millimeter-thick slices of pea (Pisum sativum) stem tissue, radioactive glucose becomes incorporated into membrane-bound polysaccharides. Evidence is given that this incorporation does not result from breakdown of UDP-glucose and utilization of the resultant free glucose, and that the incorporation most likely takes place at the cell surface, leading to a specific labeling of the plasma membrane. The properties of the plasma membrane that are indicated by this method of recognition, including the association of K+-stimulated ATPase activity with the plasma membrane, resemble properties inferred using other approaches. The membrane-associated polysaccharide product formed from UDP-glucose is largely 1,3-linked glucan, presumably callose, and does not behave as a precursor of cell wall polymers. No substantial amount of cellulose is formed from UDP-glucose in this procedure, even though these cells incorporate free glucose rapidly into cellulose. This synthetase system that uses external UDP-glucose may serve for formation of wound callose.  相似文献   
29.
30.
W J Ray  J M Puvathingal  Y W Liu 《Biochemistry》1991,30(28):6875-6885
Crystals of phosphoglucomutase, grown in 2.1 M ammonium sulfate, "desalted", and suspended in a 30% polyoxyethylene-8000/1 M glycine solution as described in the accompanying paper [Ray, W. J., Jr., Puvathingal, J. M., Bolin, J. T., Minor, W., Liu, Y., & Muchmore, S. W. (1991) Biochemistry 30 (preceding paper in this issue)], were treated with glucose phosphates to form an equilibrium mixture of the catalytically active substrate/product complexes. However, this treatment extensively fractured the crystals, even when very dilute solutions of glucose phosphates were used. But formation of the desired complexes was achieved, without fracturing, by introducing the glucose phosphates at high salt concentration, where they do not bind significantly to the enzyme, and maintaining their presence during subsequent sulfate-removal steps, in order to obtain essentially uniform binding throughout the crystal at all times. Although this procedure produced unfractured crystals of the catalytically active complexes, an adjustment in water activity was required to prevent the crystals from slowly liquefying in the presence of the added glucose phosphates. After this adjustment, the quality of diffraction-grade crystals subjected to this treatment was not significantly altered. An even larger adjustment in water activity was required to stabilize crystals that had been largely converted into a mixture of vanadate-based transition-state analogue complexes [cf. Ray, W. J., Jr., & Puvathingal, J. M. (1990) Biochemistry 29, 2790-2801] by means of an analogous procedure. The rationale for, and the implications of, this adjustment of water activity are discussed. The phenomenon of lattice-based binding cooperativity also is discussed together with a possible role for such cooperativity in the fracturing of protein crystals during formation of ligand complexes and possible ways to circumvent such fracturing based on the annealing of crystals at fractional saturation. An assay for quantifying the extent of formation of the vanadate-based transition-state analogue complexes in crystals of phosphoglucomutase is described. A solution to problems associated with producing and maintaining a steady-state in treated crystals is discussed within the context of maximizing the fraction of the crystalline enzyme present as a complex with one such inhibitor, glucose alpha-1-phosphate-6-vanadate. One of these problems, achieving a substantial reduction in sulfate concentration, could not be successfully addressed by employing the desalting procedure used to produce the substrate/product complexes, because of reduced diffusional rates in the final solution.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号