首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   384篇
  免费   44篇
  2021年   3篇
  2020年   3篇
  2019年   3篇
  2017年   8篇
  2016年   7篇
  2015年   10篇
  2014年   12篇
  2013年   18篇
  2012年   18篇
  2011年   12篇
  2010年   12篇
  2009年   15篇
  2008年   13篇
  2007年   17篇
  2006年   16篇
  2005年   14篇
  2004年   18篇
  2003年   22篇
  2002年   10篇
  2001年   13篇
  2000年   16篇
  1999年   10篇
  1998年   15篇
  1997年   5篇
  1996年   4篇
  1995年   7篇
  1994年   5篇
  1993年   7篇
  1992年   8篇
  1991年   12篇
  1990年   9篇
  1989年   9篇
  1988年   3篇
  1987年   4篇
  1986年   6篇
  1985年   8篇
  1984年   7篇
  1983年   4篇
  1982年   2篇
  1981年   5篇
  1980年   2篇
  1979年   4篇
  1978年   5篇
  1977年   3篇
  1976年   3篇
  1975年   4篇
  1973年   5篇
  1969年   2篇
  1968年   2篇
  1950年   2篇
排序方式: 共有428条查询结果,搜索用时 15 毫秒
101.
Mixotrophic Growth of a Thiobacillus ferrooxidans Strain   总被引:6,自引:3,他引:3       下载免费PDF全文
Mixotrophic growth of a Thiobacillus ferrooxidans strain is described. DNA moles percent guanine plus cytosine and homology determinations confirmed that the mixotrophically grown T. ferrooxidans cultures were not contaminated with heterotrophic Acidiphilium strains.  相似文献   
102.
The minimum region required for replication of the broad-host-range Thiobacillus ferrooxidans plasmid pTF-FC2 in Escherichia coli was shown to be contained on a 2.05-kilobase fragment of DNA. A 184-base-pair fragment that was required in cis for plasmid replication was identified. This region was also involved in plasmid incompatibility. Nucleotide sequencing of this region revealed three perfectly conserved 22-base-pair tandemly repeated sequences. A comparison of this region with the equivalent region of the broad-host-range plasmid R1162 showed that the repeated sequences had 60% nucleotide homology. The 106-base-pair region immediately adjacent to the repeated sequences was 75% homologous. These plasmids were compatible.  相似文献   
103.
104.
105.
The ferrous-iron oxidation kinetics of a bacterial culture consisting predominantly of Leptospirillum ferrooxidans were studied in continuous-flow bioreactors. The bacterial culture was fed with a salts solution containing 12 g/L ferrous-iron, at dilution rates ranging from 0.01 to 0.06 l/h, and temperatures ranging from 30 to 40 degrees C, at a pH of 1.75. The growth rate, and the oxygen and ferrous-iron utilization rates of the bacteria, were monitored by means of off-gas analysis and redox-potential measurement. The degree-of-reduction balance was used to compare the theoretical and experimental values of r(CO(2)), -r(O(2)) and -r(Fe(+2)), and the correlation found to be good. The maximum bacterial yield on ferrous-iron and the maintenance coefficient on ferrous-iron, were determined using the Pirt equation. An increase in the temperature from 30 to 40 degrees C did not appear to have an effect on either the maximum yield or maintenance coefficient on ferrous-iron. The average maximum bacterial yield and maintenance coefficient on ferrous-iron were found to be 0.0059 mmol C/mmol Fe(2+) and 0.7970 mmol Fe(2+)/mmol C)/h, respectively. The maximum specific growth rate was found to be 0.077 l/h. The maximum specific ferrous-iron utilization rate increased from 8.65 to 13.58 mmol Fe(2+)/mmol C/h across the range from 30 to 40 degrees C, and could be described using the Arrhenius equation. The kinetic constant in bacterial ferrous-iron oxidation increased linearly with increasing temperature. The ferrous-iron kinetics could be accurately described in terms of the ferric/ferrous-iron ratio by means of a Michaelis-Menten-based model modified to account for the effect of temperature. A threshold ferrous-iron level, below which no further ferrous-iron utilization occurred, was found at a ferric/ferrous-iron ratio of about 2500. At an overall iron concentration of 12 g/L, this value corresponds to a threshold ferrous-iron concentration of 78.5 x10(-3) mM.  相似文献   
106.

Background

Human growth factor receptor bound protein 7 (Grb7) is an adapter protein that mediates the coupling of tyrosine kinases with their downstream signaling pathways. Grb7 is frequently overexpressed in invasive and metastatic human cancers and is implicated in cancer progression via its interaction with the ErbB2 receptor and focal adhesion kinase (FAK) that play critical roles in cell proliferation and migration. It is thus a prime target for the development of novel anti-cancer therapies. Recently, an inhibitory peptide (G7-18NATE) has been developed which binds specifically to the Grb7 SH2 domain and is able to attenuate cancer cell proliferation and migration in various cancer cell lines.

Results

As a first step towards understanding how Grb7 may be inhibited by G7-18NATE, we solved the crystal structure of the Grb7 SH2 domain to 2.1 Å resolution. We describe the details of the peptide binding site underlying target specificity, as well as the dimer interface of Grb 7 SH2. Dimer formation of Grb7 was determined to be in the μM range using analytical ultracentrifugation for both full-length Grb7 and the SH2 domain alone, suggesting the SH2 domain forms the basis of a physiological dimer. ITC measurements of the interaction of the G7-18NATE peptide with the Grb7 SH2 domain revealed that it binds with a binding affinity of Kd = ~35.7 μM and NMR spectroscopy titration experiments revealed that peptide binding causes perturbations to both the ligand binding surface of the Grb7 SH2 domain as well as to the dimer interface, suggesting that dimerisation of Grb7 is impacted on by peptide binding.

Conclusion

Together the data allow us to propose a model of the Grb7 SH2 domain/G7-18NATE interaction and to rationalize the basis for the observed binding specificity and affinity. We propose that the current study will assist with the development of second generation Grb7 SH2 domain inhibitors, potentially leading to novel inhibitors of cancer cell migration and invasion.  相似文献   
107.
Alterations in the cytosolic concentration of calcium ions (Ca2+) transmit information that is crucial for the development and function of B cells. Cytosolic Ca2+ concentration is determined by a balance of active transport and gradient-driven Ca2+ fluxes, both of which are subject to the influence of multiple receptors and environmental sensing pathways. Recent advances in genomics have allowed for the compilation of an increasingly comprehensive list of Ca2+ transporters and channels expressed by B cells. The increasing understanding of the function and regulation of these proteins has begun to shift the frontier of Ca2+ physiology in B cells from molecular analysis to determining how diverse inputs to cytosolic Ca2+ concentration are integrated in specific immunological contexts.  相似文献   
108.
109.
The broad host-range IncQ-2 family plasmid, pTF-FC2, is a mobilizable, medium copy number plasmid that lacks an active partitioning system. Plasmid stability is enhanced by a toxin–antitoxin (TA) system known as pas (plasmid addiction system) that is located within the replicon between the repB (primase) and the repA (helicase) and repC (DNA-binding) genes. The discovery of a closely related IncQ-2 plasmid, pRAS3, with a completely different TA system located between the repB and repAC genes raised the question of whether the location of pas within the replicon had an effect on the plasmid in addition to its ability to act as a TA system. In this work we demonstrate that the presence of the strongly expressed, autoregulated pas operon within the replicon resulted in an increase in the expression of the downstream repAC genes when autoregulation was relieved. While deletion of the pas module did not affect the average plasmid copy number, a pas-containing plasmid exhibited increased stability compared with a pas deletion plasmid even when the TA system was neutralized. It is proposed that the location of a strongly expressed, autoregulated operon within the replicon results in a rapid, but transient, expression of the repAC genes that enables the plasmid to rapidly restore its normal copy number should it fall below a threshold.  相似文献   
110.
In metazoan organisms protein inhibitors of peptidases are important factors essential for regulation of proteolytic activity. In vertebrates genes encoding peptidase inhibitors constitute up to 1% of genes reflecting a need for tight and specific control of proteolysis especially in extracellular body fluids. In stark contrast unicellular organisms, both prokaryotic and eukaryotic consistently contain only few, if any, genes coding for putative peptidase inhibitors. This may seem perplexing in the light of the fact that these organisms produce large numbers of proteases of different catalytic classes with the genes constituting up to 6% of the total gene count with the average being about 3%. Apparently, however, a unicellular life-style is fully compatible with other mechanisms of regulation of proteolysis and does not require protein inhibitors to control their intracellular and extracellular proteolytic activity. So in prokaryotes occurrence of genes encoding different types of peptidase inhibitors is infrequent and often scattered among phylogenetically distinct orders or even phyla of microbiota. Genes encoding proteins homologous to alpha-2-macroglobulin (family I39), serine carboxypeptidase Y inhibitor (family I51), alpha-1-peptidase inhibitor (family I4) and ecotin (family I11) are the most frequently represented in Bacteria. Although several of these gene products were shown to possess inhibitory activity, with an exception of ecotin and staphostatins, the biological function of microbial inhibitors is unclear. In this review we present distribution of protein inhibitors from different families among prokaryotes, describe their mode of action and hypothesize on their role in microbial physiology and interactions with hosts and environment.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号